全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generation of Optical Vortices by Linear Phase Ramps

DOI: 10.1155/2012/794259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Generation of optical vortices using linear phase ramps is experimentally demonstrated. When two regions of a wavefront have opposite phase gradients then along the line of phase discontinuity vortices can be generated. It is shown that vortices can evolve during propagation even with the unequal magnitude of tilt in the two regions of the wavefront. The number of vortices and their location depend upon the magnitude of tilt. vortex generation is experimentally realized by encoding phase mask on spatial light modulator and their presence is detected interferometrically. Numerical simulation has been performed to calculate the diffracted intensity distribution from the phase mask, and presence of vortices in the diffracted field is detected by computational techniques. 1. Introduction Optical fields possessing phase singularities or wavefront dislocations have received great deal of attention in recent years because of their fascinating properties and potential applications. The study of phenomena associated with phase singularities has generated a new branch of physical optics called singular optics, which reveals their basic properties and possible applications. Phase singularities also known as optical vortices are the points where the real and imaginary part of wave function vanishes. At phase singular points amplitude is zero and the phase is indeterminate. As a result, the wave front acquires the shape of helicoids, causing the precession of the Poynting vector. Nye and Berry showed that vortices in scalar field are strongly connected with the phase discontinuities or singularities [1]. Near the dislocation centers the phase gradients line is found to form closed vortex-like structures. Optical vortices can appear spontaneously or can be created in one of several ways, such as by the manipulation of laser cavity [2], transforming Gaussian beams into helical beams [3], computer generated holograms [4], cylindrical lenses [5], and spiral phase plates [6]. In recent years several important applications of optical vortices have been demonstrated. For example vortices have been used in optical tweezers [7], wave guiding [8], astronomy as coronagraph [9], optical testing [10], and so forth. In this paper, experimental and simulation studies are performed to show the formation of vortices along the line of phase discontinuity which arises due to the different phase gradients in the wavefront. To explain the concept of vortex evolution we first discussed a simple case in which the two parts of the wavefront are given equal and opposite phase variations.

References

[1]  J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proceedings of the Royal Society of London Series A, vol. 336, pp. 165–190, 1974.
[2]  J. M. Vaughan and D. V. Willetts, “Temporal and interference fringe analysis of TEM01* laser modes,” Journal of the Optical Society of America, vol. 73, no. 8, pp. 1018–1021, 1983.
[3]  C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Physical Review A, vol. 38, no. 11, pp. 5960–5963, 1988.
[4]  N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated hologram,” Optics Letters, vol. 17, pp. 221–223, 1992.
[5]  M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Optics Communications, vol. 96, pp. 123–132, 1993.
[6]  M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Optics Communications, vol. 112, no. 5-6, pp. 321–327, 1994.
[7]  K. T. Gahagan and G. A. Swartzlander Jr., “Trapping of low-index microparticles in an optical vortex,” Journal of the Optical Society of America B, vol. 15, no. 2, pp. 524–534, 1998.
[8]  G. A. Swartzlander Jr. and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Physical Review Letters, vol. 69, no. 17, pp. 2503–2506, 1992.
[9]  J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Physical Review Letters, vol. 97, no. 5, article 053901, 2006.
[10]  P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Applied Optics, vol. 42, no. 31, pp. 6314–6320, 2003.
[11]  S. Vyas and P. Senthilkumaran, “Vortices from wavefront tilts,” Optics and Lasers in Engineering, vol. 48, no. 9, pp. 834–840, 2010.
[12]  S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Optics Communications, vol. 283, pp. 2767–2771, 2010.
[13]  J. W. Goodman, Introduction to Fourier Optics, The McGraw-Hill Companies, 2nd edition, 1996.
[14]  I. Freund, “Saddles, singularities, and extrema in random phase fields,” Physical Review E, vol. 52, no. 3, pp. 2348–2360, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133