全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

不同竹种竹笋中5-脱氧独脚金醇的UPLC分析

DOI: 10.11869/j.issn.100-8551.2015.06.1114, PP. 1114-1120

Keywords: 固相萃取,超高效液相色谱仪,竹笋,独脚金内酯,5-脱氧独角金醇

Full-Text   Cite this paper   Add to My Lib

Abstract:

5-脱氧独角金醇(5-DS)是植物激素独脚金内酯的合成前体,是当前独脚金内酯定量的重要指标。为研究独角内脂对植物分枝/分蘖的抑制作用,本研究通过比较不同提取剂、提取纯化方法对刚竹属不同竹种竹笋5-DS含量的影响。结果发现:乙酸乙酯作为提取剂,利用超声辅助提取可节约前处理时间并提高提取率,固相萃取纯化可有效减少杂峰干扰。经以上处理后,使用超高效液相色谱仪(UPLC)能快速准确检测竹笋组织中5-DS的含量。40~8000ng·mL-1范围内线性关系良好,检出限为8.7ng·mL-1,定量限为29.0ng·mL-1;平均加标回收率在87.9%~116.5%。检测发现不同种类竹笋中5-DS含量变化为11.27~51.17ng·g-1(FW),其中毛竹中5-DS含量最高。本研究使用超高效液相色谱仪建立竹笋中5-DS的前处理和检测方法,方法准确、精密度高、重现性好,可为竹子的分枝生理研究提供参考。

References

[1]  Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210): 189-194
[2]  Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200
[3]  Xie X, Yoneyama K, Yoneyama K. The strigolactone story[J]. Annual review of phytopathology, 2010, 48: 93-117
[4]  冯摇, 丹摇, 陈贵林. 独脚金内酯调控侧枝发育的研究进展[J]. Journal of Ecology, 2011, 30(2): 349-356
[5]  Marzec M, Muszynska A, Gruszka D. The role of strigolactones in nutrient-stress responses in plants[J]. International journal of molecular sciences, 2013, 14(5): 9286-9304
[6]  Fu J H, Sun X H, Wang J D, Fu J H, Sun X H, Wang J D, Chu J F, Yan C Y. Progress in quantitative analysis of plant hormones[J]. Chinese Science Bulletin, 2011, 56(4/5): 355-366
[7]  符继红, 孙晓红, 王吉德, 褚金芳, 闫存玉. 植物激素定量分析方法研究进展[J]. 科学通报, 2010, 55(33): 3163-3176
[8]  侯凯, 陈郡雯, 申浩, 翟娟园, 陈黎, 吴卫. 川白芷内源激素的提取纯化和高效液相色谱法同步测定[J]. 核农学报, 2013, 27(5): 653-657
[9]  陈伟, 苏新国, 郜海燕, 杨震峰. 低温对桃果实采后冷害及其内源激素的影响[J]. 核农学报, 2013, 27(8): 1173-1178
[10]  侯勇, 曾显斌, 朱彭玲, 曾芸, 余桂蓉, 陈强, 夏中梅. 噻苯隆对黄瓜果实生长及内源激素水平的影响[J]. 核农学报, 2012, 25(6): 1286-1291
[11]  张齐生. 重视竹材化学利用, 开发竹炭应用技术[J]. 竹子研究汇刊, 2001, 20(3): 34-35
[12]  萧江华. 我国竹业发展现状与对策[J]. 竹子研究汇刊, 2000, 19(1): 1-5
[13]  刘颖坤, 李国栋, 桂仁意, 张慧, 胡骁伟. 毛竹根系5-脱氧独角金醇的超高效液相色谱分析[J]. 浙江农林大学学报, 2013, 30(4): 607-610
[14]  López‐Ráez J A, Charnikhova T, Gómez‐Roldán V, Matusova R, Kohlen W, Vos R D, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation[J]. New Phytologist, 2008, 178(4): 863-874
[15]  Delaux P M, Xie X, Timme R E, Puech-Pages V, Dunand C Lecompte E, Delwiche C F, Yoneyama K, Bécard G, Séjalon-Delmas N. Origin of strigolactones in the green lineage[J]. New Phytologist, 2012, 195(4): 857-871
[16]  Aroca R, Ruiz-Lozano J M, Zamarre  M, Paz J A, García-Mina J M, Pozo M J, López-Ráez J A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants[J]. Journal of Plant Physiology, 2013, 170(1): 47-55
[17]  Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1118-1126
[18]  Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry[J]. Nature Protocols, 2010, 5(6): 986-992
[19]  Yoneyama K, Xie X, Yoneyama K, Takeuchi Y. Strigolactones: structures and biological activities[J]. Pest management Science, 2009, 65(5): 467-470
[20]  Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi[J]. Plant and Cell Physiology, 2010, 51(7): 1104-1117
[21]  Zwanenburg B, Mwakaboko A S, Reizelman A, Anilkumar G, Sethumadhavan D. Structure and function of natural and synthetic signalling molecules in parasitic weed germination[J]. Pest management science, 2009, 65(5): 478-491
[22]  Yoneyama K, Xie X, Kim H I, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?[J]. Planta, 2012, 235(6): 1197-1207
[23]  Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum[J]. Planta, 2013, 238(5): 885-894
[24]  Ito S, Umehara M, Hanada A, Kitahata N, Hayase H, Yamaguchi S, Asami T. Effects of triazole derivatives on strigolactone levels and growth retardation in rice[J]. PloSONE, 2011, 6(7): e21723
[25]  Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester H J. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection[J]. Planta, 2012, 235(3): 473-484
[26]  Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiology, 2009, 151(1): 400-412
[27]  方楷, 杨光耀, 杨清培, 黄俊宝, 施建敏, 于芬. 毛竹成竹过程中内源激素动态变化[J]. 江西农业大学学报, 2011, 33(6): 1107-1111
[28]  Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones[J]. Trends in plant science, 2013, 18(2): 72-83
[29]  Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 Encodes a Cytochrome P450 Family Member that Acts Downstream of MAX3/4 to Produce a Carotenoid-Derived Branch-Inhibiting Hormone[J]. Developmental Cell, 2005, 8(3): 443-449
[30]  Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun E A, Brewer P B, Beveridge C A, Sieberer T, Sehr E M, Greb T. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants[J]. Proceedings of the National Academy of Sciences, 2011, 108(50): 20242-20247
[31]  Domagalska M A, Leyser O. Signal integration in the control of shoot branching[J]. Nature Reviews Molecular Cell Biology, 2011, 12(4): 211-221

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133