全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

外源硅素对龙柏和侧柏耐镉性的影响机制研究

DOI: 10.11869/j.issn.100-8551.2015.06.1225, PP. 1225-1231

Keywords: ,,柏树,根际,抗氧化系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用盆栽试验研究不同浓度硅(400、1000mg·kg-1)对龙柏和侧柏镉(200mg·kg-1)耐性的影响。结果表明,400mg·kg-1硅处理下,2种柏树根际交换态Cd含量均显著降低,且侧柏的降低幅度远高于龙柏。与对照相比,镉处理90d显著抑制了龙柏和侧柏的生长,400mg·kg-1硅处理显著缓解了镉对柏树生长的抑制作用,而1000mg·kg-1硅处理加重了Cd的毒害效应。硅提高龙柏和侧柏镉耐性机制不同。对于龙柏来讲,施用400mg·kg-1硅抑制了镉吸收,并显著降低了茎、叶部的镉浓度;而对于侧柏来讲,硅显著提高了叶片中POD和CAT活性,抑制了SOD活性,从而缓解镉胁迫诱导产生的氧化伤害。本研究旨在阐明Si提高柏树Cd耐性机理,并为重度Cd污染土壤上的植被绿化提供理论参考。

References

[1]  Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8):392-397
[2]  王耀晶, 马聪, 张薇, 刘鸣达. 干旱胁迫下硅对草莓生长及生理特性的影响[J]. 核农学报, 2013, 27(5):703-707
[3]  刘慧霞, 郭兴华, 郭正刚. 盐生境下硅对坪用高羊茅生物学特性的影响[J]. 生态学报, 2011, 31(23): 7039-7046
[4]  范琼花, 孙万春, 李兆君, 梁永超. 硅对短期低温胁迫小麦叶片光合作用及其主要相关酶的影响[J].植物营养与肥料学报,2009, 15(3):544-550
[5]  张翠翠, 常介田, 高素玲, 赵全志. 硅处理对镉锌胁迫下水稻产量及植株生理特性的影响[J]. 核农学报, 2012, 26(6): 936-941
[6]  Liang Y C, Sun W C, Zhu Y G, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review[J]. Environmental Pollution, 2007, 147(2): 422-428
[7]  Shi X H, Zhang C C, Wang H, Zhang F S. Effect of Si on the distribution of Cd in rice seedlings[J]. Plant and Soil 2005, 272(1/2): 53-60
[8]  Zhang C, Wang L, Nie Q, Zhang W, Zhang F. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.) [J]. Environmental and Experimental Botany, 2008, 62(3): 300-307.
[9]  Rizwan M, Meunier J D, Miche H, Keller C. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination[J]. Journal of Hazardous Materials, 2012, 209/210: 326-334.
[10]  Ye J, Yan C, Liu J, Lu H, Liu T, Song Z. Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong[J]. Environmental Pollution, 2012, 162: 369-373.
[11]  Gu H H, Qiu H, Tian T, Zhan S S, Deng T H B, Chaney R L, Wang S Z, Tang Y T, Morel J L, Qiu R L. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil[J]. Chemosphere, 2011, 83(9): 1234-1240
[12]  Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants[J]. Annals of Botany, 2012, 110(2): 433-443
[13]  Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58(4): 475-483
[14]  Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I. Silicon mitigates cadmium inhibitory effects in young maize plants[J]. Environmental and Experimental Botany, 2009, 67(1): 52-58
[15]  Rauser W E. Compartmental efflux analysis and removal of extracellular cadmium from roots[J]. Plant Physiology, 1987, 85(1): 62-65
[16]  da Cunha K P V, do Nascimento C W A. Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil[J]. Water, Air, and Soil Pollution, 2009, 197(1/4): 323-330
[17]  Guo B, Liang Y C, Fu Q L, Ding N F, Liu C, Lin Y C, Li H, Li N Y. Cadmium stabilization with nursery stocks through transplantation: A new approach to phytoremediation[J]. Journal of Hazardous Materials, 2012, 199/200: 233-239
[18]  Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical chemistry, 1979, 51(7): 844-851
[19]  李合生, 孙群, 赵世杰, 章文华. 植物生理生化原理和实验技术[M]. 北京:高等教育出版,2004
[20]  di Toppi L S, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999, 41(2): 105-130
[21]  安志装, 王校常, 严蔚东, 施卫明. 镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响[J]. 土壤学报, 2004, 41(5):728-734
[22]  Pietrini F, Iannelli M A, Pasqualini S, and Massacci A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel[J]. Plant Physiology, 2003, 133(2):829-837.
[23]  宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(ECx)及预测模型[J]. 中国农业科学, 2014, 47(17):3434-3443
[24]  杨超光, 豆虎, 梁永超, 娄运生. 硅对土壤外源镉活性和玉米吸收镉的影响[J]. 中国农业科学, 2005, 38(1): 116-121
[25]  Guo B, Liang YC, Zhu YG, Zhao F J. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa. L) subjected to cadmium stress[J]. Environmental Pollution, 2007, 147(3): 743-749
[26]  韩志萍, 吕春燕, 王趁义, 张华, 赵艳, 庄朱娟, 匡家才, 徐卫平. 镉胁迫对芦竹抗氧化酶活性的影响[J]. 核农学报, 2008, 22(6): 846- 850
[27]  Song A L, Li Z J, Zhang J, Xue G F, Fan F L, Liang Y C. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity[J]. Journal of hazardous materials, 2009, 172(1): 74-83
[28]  李冬香, 李光德, 张华, 刘明明, 郝英华. 硅作用下镉对小麦幼苗生理生化指标的影响研究[J].中国农学通报, 2013, 29(36):84-90

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133