全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

气液旋流器内液相平均停留时间

DOI: 10.11949/j.issn.0438-1157.20150469, PP. 4373-4379

Keywords: 气液旋流,分离,液相,停留时间,模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

旋流设备内伴有传热、传质或反应过程时,介质停留时间是其关键参数。在冷模实验装置上,采用持液量法,对气液旋流器内液相平均停留时间进行了研究。结果表明,液相停留时间随入口含液率增大明显降低,随入口气速增大降低较小。气液界面剪切力远小于液相重力是入口气速对液相停留时间影响较小的主要原因。基于液膜受力平衡,建立了气液旋流器内液相平均停留时间模型。模型预测停留时间与实测值总体吻合良好,在液膜Reynolds数Rel<1200范围内,模型预测停留时间偏大,讨论了模型预测偏差与液膜流型的关系。

References

[1]  Lede J, Li H Z, Villermaux J. Cyclone reactor(Ⅰ): Direct measurement of the gas phase dwell time distribution extrapolation laws [J]. Chemical Engineering Journal, 1989, 42(1): 37-55.
[2]  Chao Z X, Sun G G, et al. Gas flow behavior and residence time distribution in a rough-cut cyclone [J]. Chemical Engineering Journal, 2005, 106(1): 43-52.
[3]  Sun Fengxia (孙凤侠), Lu Chunxi (卢春喜), Shi Mingxian (时铭显). Numerical simulation of gas residence time distribution in vortex quick separator of FCC disengager [J]. Journal of China University of Petroleum (中国石油大学学报:自然科学版), 2006, 30(6): 77-82.
[4]  Chao Zhongxi (晁忠喜), Sun Guogang (孙国刚), Shi Mingxian (时铭显). Residence time distributiom of oil vapor a FCC disengager [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2005, 21(04): 7-13.
[5]  Lede J, Li H Z, Soulignac F, et al. Measurement of solid particle residence time in a cyclone reactor: a comparison of four methods [J]. Chemical Engineering and Processing, 1987, 22 (4): 215-222.
[6]  Li S H, Yang S, Yang H R, et al. Particle holdup and average residence time in the cyclone of a CFB boiler [J]. Chemical Engineering & Technology, 2008, 31 (2): 224-230.
[7]  Kang S K, Kwon T W, Kim S D. Hydrodynamic characteristics of cyclone reactors [J]. Powder Technology, 1989, 58(3): 211-220.
[8]  Huang Feng (黄峰), Sun Zhiqian (孙治谦), Wang Zhenbo (王振波), et al. CFD simulation of partical residence time distribustion in cyclone reactor [J]. Petro-Chemical Equipment (石油化工设备), 2014, 43(1): 9-13.
[9]  Corrêa J L G, Graminho D R, Silva M A, et al. The cyclonic dryer: a numerical and experimental analysis of the influence of geometry on average particle residence time [J]. Brazilian Journal of Chemical Engineering, 2004, 21: 103-112.
[10]  Li Chao(李超), Dai Zhenghua (代正华), Xu Jianliang (许建良), et al. Numerical simulation of particle residence time distribution in OMB gasifier [J]. Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2011, 25 (3): 416-422.
[11]  Liu Yingjie(刘英杰), Lan Xingying(蓝兴英), Liu Xuyang(刘旭阳), et al. CFD simulation of residence time distributions of gas and solid in industrial FCC strippers [J]. Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2010, 24(5): 770-775.
[12]  Ma L, Shen Q, Li J, et al. Efficient gas-liquid cyclone device for recycled hydrogen in a hydrogenation unit [J]. Chemical Engineering & Technology, 2014, 37 (6): 1072-1078.
[13]  Hreiz R, Lainé R, Wu J, et al. On the effect of the nozzle design on the performances of gas-liquid cylindrical cyclone separators [J]. International Journal of Multiphase Flow, 2014, 58: 15-26.
[14]  Wu Xiaolin(吴小林), Xiong Zhiyi (熊至宜), Ji Zhongli (姬忠礼). Gas-liquid separation performance of cyclone separator for purification of natural gas [J]. CIESC Journal (化工学报), 2010, 61(9): 2430-2436.
[15]  Wang Zhenbo (王振波), Ren Xiangjun (任相军), Ma Yi (马艺), et al. Theoretical analysis and separation efficiency calculation of axial-flow hydrocyclone for gas-liquid separation [J]. Petro-Chemical Equipment (石油化工设备), 2010, 39(6): 4-6.
[16]  Austrheim T, Gjertsen L H, Hoffmann A C. Is the Souders-Brown equation sufficient for scrubber design? An experimental investigation at elevated pressure with hydrocarbon fluids [J]. Chemical Engineering Science, 2007, 62 (21): 5715-5727.
[17]  Austrheim T, Gjertsen L H, Hoffmann A C. Re-entrainment correlations for demisting cyclones acting at elevated pressures on a range of fluids [J]. Energy & Fuels, 2007, 21 (5): 2969-2976.
[18]  Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes: Principles, Design, and Operation[M]. Berlin: Springer, 2007: 318-326.
[19]  Abduvayt P, Arihara N, Manabe R, et al. Experimental and modeling studies for gas-liquid two-phase flow at high pressure conditions [J]. Journal of the Japan Petroleum Institute, 2003, 46(2): 111-125.
[20]  Zhao T S, Liao Q. Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels [J]. International Journal of Heat and Mass Transfer, 2002, 45(13): 2829-2842.
[21]  Chang H. Wave evolution on a falling film [J]. Annual Review of Fluid Mechanics, 1994, 26 (1): 103-136.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133