全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

羟基化多壁碳纳米管/R141b纳米流体核沸腾

DOI: 10.11949/j.issn.0438-1157.20150271, PP. 4424-4430

Keywords: 羟基化,碳纳米管,纳米流体,传热,CCD高速成像,热力学过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

向多壁碳纳米管引入羟基基团,改善了其在制冷剂R141b中的分散性和稳定性。同时研究了不同质量分数纳米流体热导率、表面颗粒沉积、接触角变化对核沸腾传热性能的影响。结果表明:羟基化碳纳米流体强化沸腾传热,强化率随质量分数的增加而增加,沸腾后期有所下降。在测试浓度范围内,质量分数为0.05%,热通量为87.4kW·m-2时,强化率达到最大168%。流体的热导率随着质量分数的增加而增大,质量分数为0.10%时其热导率是纯R141b的1.18倍。分析认为:纳米流体热导率的增加、表面沉积颗粒及纳米颗粒扰动是强化传热的主要影响因素,接触角变化的影响可忽略不计。结论由质量分数为0.03%纳米流体沸腾过程高速成像得到验证。

References

[1]  Xuan Yimin (宣益民). An overview on nanofluids and applications [J]. Scientia Sinica Technologica (中国科学: 技术科学), 2014, 44(3): 269-279.
[2]  Choi S U S. Enhancing thermal conductivity of fluids with nano-particles [J]. ASME-Publications-Fed, 1995, 231(66): 99-103.
[3]  Peng Hao, Ding Guoliang, Jiang Weiting, Hu Haitao, Gao Yifeng. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2009, 32(6): 1259-1270.
[4]  Peng Hao, Ding Guoliang, Jiang Weiting, Hu Haitao, Gao Yifeng. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2009, 32(6): 1756-1764.
[5]  Peng Hao, Ding Guoliang, Jiang Weiting, Hu Haitao, Zhuang Dawei, Wang Kaijian. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles [J]. International Journal of Refrigeration, 2010, 33(2): 347-358.
[6]  Peng Hao, Ding Guoliang, Hu Haitao. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid [J]. Experimental Thermal and Fluid Science, 2011, 35(6): 960-970.
[7]  Peng Hao, Ding Guoliang, Hu Haitao. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling [J]. International Journal of Refrigeration, 2011, 34(8) :1823-1832.
[8]  Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids [J]. International Journal of Heat Mass Transfer, 2009, 52(4): 1582-1588.
[9]  Sang M Kwark, Ratan Kumar, Gilberto Moreno, Jaisuk Yoo, Seung M You. Pool boiling characteristics of low concentration nanofluids [J]. International Journal of Heat Mass Transfer, 2010, 53(5/6): 972-981.
[10]  Henderson K, Park Y G, Liu Liping. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube [J]. International Journal of Heat Mass Transfer, 2010, 53(5/6): 944-951.
[11]  Park S D, Lee S W, Kang Sarah, Kim S M , Bang I C. Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments [J]. Nuclear Engineering and Design, 2012, 252: 184-191.
[12]  Shoghl S N, Bahrami M. Experimental investigation on pool boiling heat transfer of ZnO and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient [J]. International Communications in Heat and Mass Transfer, 2013, 45: 122-129.
[13]  Cheng Lixin, Liu Lei. Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges [J]. International Journal of Refrigeration, 2013, 36(2): 421-446.
[14]  Ganapathy H, Sajith V. Semi-analytical model for pool boiling of nanofluids [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 32-47.
[15]  Bi Shengshan (毕胜山), Shi Lin (史琳).Experimental investigation of a refrigerator with a nano-refrigerant [J]. Journal of Tsinghua University: Science and Technology (清华大学学报:自然科学版), 2007, 47(11): 2-12.
[16]  Zhou Feng (周峰), Ma Guoyuan (马国远), Liu Zhongliang (刘中良). Thermal performance of thermosyphon with carbon nano-tubes refrigerant working fluid [J]. Journal of Thermal Science and Technology (热科学与技术), 2013, 12(4): 360-367.
[17]  Ma Xuehu, Yu Chunjian, Lan Zhong, Wang Donghui, Bai Tao. Experimental study of nucleate boiling heat transfer using enhanced space-confined structures [J]. Journal of Heat Transfer, 2012, 134(6): 1-10.
[18]  Song Xiaoyu (宋晓瑜). Functionalization and application of multi-walled carbon.nanotubes [D]. Dalian: Dalian University of Technology, 2013.
[19]  Tang Xiao (唐潇), Diao Yanhua (刁彦华), Zhao Yaohua (赵耀华), Zhang Ji (张冀). Nucleate pool boiling heat transfer of δ-Al2O3-R141b nanofluid on horizontal plate [J]. CIESC Journal (化工学报), 2012, 63(1):64-70.
[20]  Anoop K, Sadr R, Yu Jiwon, Kang Seokwon, Saeil Jeon, Banerjee D. Experimental study of forced convective heat transfer of nanofluids in a microchannel [J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1325-1330.
[21]  Naphon P, Thongjing C. Pool boiling heat transfer characterristics of refrigerant-nanoparticle mixtures [J]. International Communications in Heat and Mass Transfer, 2014, 52: 84-89.
[22]  Diao Yanhua (刁彦华), Zhao Yaohua (赵耀华), Wang Qiuliang (王秋良). Bubble dynamics and heat transfer mechanism of pool boiling of R-113 [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2005, 56(2): 227-234.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133