Qin Shaodong(秦绍东), Long Junying(龙俊英), Tian Dayong(田大勇), Wang Guogao(汪国高), Yang Xia (杨霞), Sun Shouli(孙守理), Sun Qi(孙琦). Supported Mo-based catalysts with different carriers for methanation [J]. Industrial Catalysis(工业催化), 2014, 22(10): 770-774.
[2]
Wang H, Li Z, Wang E, Lin C, Shang Y, Ding G, Ma X, Qin S, Sun Q. Effect of composite supports on the methanation activity of Co-Mo-based sulphur-resistant catalysts [J]. Journal of Natural Gas Chemistry, 2012, 21(6): 767-773.
[3]
Mestl G, Srinivasan T K K. Raman spectroscopy of monolayer-type catalysts: supported molybdenum oxides [J]. Catalysis Reviews: Science and Engineering, 1998, 40(4): 451-570.
[4]
Wachs I E. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts [J]. Catalysis Today, 1996, 27(3/4): 437-455.
[5]
Wang B, Ding G, Shang Y, Lv J, Wang H, Wang E, Li Z, Ma X, Qin S, Sun Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3 [J]. Applied Catalysis A: General, 2012, 431/432: 144-150.
[6]
Li C P, Hercules D M. A surface spectroscopic study of sulfided molybdena-alumina catalysts [J]. Journal of Physical Chemistry, 1984, 88(3): 456-464.
[7]
Xu Xianping(徐献平), Zhao Biying(赵璧英), Xie Youchang(谢有畅), Tang Youqi(唐有祺), Yang Xianchun(杨先春). Study on the states of molybdena in MoO3/γ-Al2O3 and their formation conditions [J]. Chinese Journal of Catalysis(催化学报), 1992, 13(2): 97-102.
[8]
Sakashita Y. Effects of surface orientation and crystallinity of alumina supports on the microstructures of molybdenum oxides and sulfides [J]. Surface Science, 2001, 489(1/2/3): 45-58.
[9]
Sakashita Y, Araki Y, Shimada H. Effects of surface orientation of alumina supports on the catalytic functionality of molybdenum sulfide catalysts [J]. Applied Catalysis A: General, 2001, 215(1/2): 101-110.
[10]
Yao Yuqin(姚玉芹), Liu Sihan(刘思含), Hu Zongyuan(胡宗元), Wang Baowei(王保伟). Effects of alumina properties on the activity of Mo-based catalyst for sulfur-resistant methanation [J]. Petrochemical Technology(石油化工), 2014, 43(7): 754-758.
[11]
Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts(Ⅰ): Oxygen storage [J]. Journal of Catalysis, 1984, 86(2): 254-265.
[12]
Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures [J]. International Journal of Hydrogen Energy, 2012, 37(7): 5527-5531.
[13]
Wang Minwei(王敏炜), Wei Wenlong(魏文龙), Luo Laitao(罗来涛). Preparation of CeO2 and its role as catalyst support [J]. Chemical Industry and Engineering Progress(化工进展), 2006, 25(5): 517-519.
[14]
Wang B, Shang Y, Ding G, Lv J, Wang H, Wang E, Li Z, Ma X, Qin S, Sun Q. Effect of the ceria-alumina composite support on the Mo-based catalyst's sulfur-resistant activity for the synthetic natural gas process [J]. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106(2): 495-506.
[15]
Jiang M, Wang B, Yao Y, Wang H, Li Z, Ma X, Qin S, Sun Q. The role of the distribution of Ce species on MoO3/CeO2-Al2O3 catalysts in sulfur-resistant methanation [J]. Catalysis Communications, 2013, 35: 32-35.
[16]
Jiang M, Wang B, Lv J, Wang H, Li Z, Ma X, Qin S, Sun Q. Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation [J]. Applied Catalysis A: General, 2013, 466: 224-232.
[17]
Jiang M, Wang B, Yao Y, Li Z, Ma X, Qin S, Sun Q. A comparative study of CeO2-Al2O3 supported prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation [J]. Applied Surface Science, 2013, 285(PARTB): 267-277.
[18]
Sasaki T, Suzuki T. Sulfide molybdenum catalysts for water-gas shift reaction: influence of the kind of promoters and supports to generate MoS2 [J]. Applied Catalysis A: General, 2014, 484: 79-83.
[19]
Chen Y Y, Dong M, Wang J, Jiao H. Mechanisms and energies of water gas shift reaction on Fe-, Co-, and Ni-promoted MoS2 catalysts [J]. Journal of Physical Chemistry C, 2012, 116(48): 25368-25375.
[20]
Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009 [J]. Fuel, 2010, 89(8): 1763-1783.
[21]
Yan X, Liu Y, Zhao B, Wang Z, Wang Y, Liu C J. Methanation over Ni/SiO2: effect of the catalyst preparation methodologies [J]. International Journal of Hydrogen Energy, 2013, 38(5): 2283-2291.
[22]
Zhao A, Ying W, Zhang H, Ma H, Fang D. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation [J]. Catalysis Communications, 2012, 17: 34-38.
[23]
Liu Z, Chu B, Zhai X, Jin Y, Cheng Y. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor [J]. Fuel, 2012, 95: 599-605.
[24]
Hu D, Gao J, Ping Y, Jia L, Gunawan P, Zhong Z, Xu G, Gu F, Su F. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production [J]. Industrial and Engineering Chemistry Research, 2012, 51(13): 4875-4886.
[25]
Wang B, Liu S, Hu Z, Li Z, Ma X. Active phase of highly active Co3O4 catalyst for synthetic natural gas production [J]. RSC Advances, 2014, 4(100): 57185-57191.
[26]
Zhu H, Razzaq R, Jiang L, Li C. Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4 catalysts [J]. Catalysis Communications, 2012, 23: 43-47.
[27]
Eckle S, Augustin M, Anfang H G, Behm R J. Influence of the catalyst loading on the activity and the CO selectivity of supported Ru catalysts in the selective methanation of CO in CO2 containing feed gases [J]. Catalysis Today, 2012, 181(1): 40-51.
[28]
Galletti C, Specchia S, Specchia V. CO selective methanation in H2-rich gas for fuel cell application: microchannel reactor performance with Ru-based catalysts [J]. Chemical Engineering Journal, 2011, 167(2/3): 616-621.
[29]
Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F. Recent advances in methanation catalysts for the production of synthetic natural gas [J]. RSC Advances, 2015, 5(29): 22759-22776.
[30]
Happel J, Hnatow M A, Bajars L. Methods of making high activity transition metal catalysts[P]: US, 4491639. 1985-01-01.
[31]
Alex M G, Steffgen F W. Catalytic methanation [J]. Catalysis Reviews, 1974, 8(1): 159-210.
[32]
Logadóttir A, Moses P G, Hinnemann B, Tops?e N Y, Knudsen K G, Tops?e H, N?rskov J K. A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts [J]. Catalysis Today, 2006, 111(1/2): 44-51.
[33]
Chianelli R R, Berhault G, Raybaud P, Kasztelan S, Hafner J, Toulhoat H. Periodic trends in hydrodesulfurization: in support of the Sabatier principle [J]. Applied Catalysis A: General, 2002, 227(1/2): 83-96.
[34]
Alonso G, Berhault G, Aguilar A, Collins V, Ornelas C, Fuentes S, Chianelli R R. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates [J]. Journal of Catalysis, 2002, 208(2): 359-369.
[35]
Okamoto Y, Maezawa A, Imanaka T. Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation [J]. Journal of Catalysis, 1989, 120(1): 29-45.
[36]
Bui V N, Laurenti D, Afanasiev P, Geantet C. Hydrodeoxygenation of guaiacol with CoMo catalysts (Ⅰ): Promoting effect of cobalt on HDO selectivity and activity [J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 239-245.
[37]
Badawi M, Paul J F, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil J M, El Fallah J, Gilson J P, Mariey L, Travert A, Maugé F. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study [J]. Journal of Catalysis, 2011, 282(1): 155-164.
[38]
Christensen J M, Jensen P A, Jensen A D. Effects of feed composition and feed impurities in the catalytic conversion of syngas to higher alcohols over alkali-promoted cobalt-molybdenum sulfide [J]. Industrial and Engineering Chemistry Research, 2011, 50(13): 7949-7963.
[39]
Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas [J]. RSC Advances, 2012, 2(6): 2358-2368.
[40]
Lin Hualin(蔺华林), Li Kejian(李克健), Zhao Lijun(赵利军). Research progress of coal-based high temperature methanation catalyst for synthetic natural gas [J]. Chemical Industry and Engineering Progress(化工进展), 2011, 30(8): 1739-1743.
[41]
Hu Dacheng(胡大成), Gao Jiajian(高加俭), Jia Chunmiao(贾春苗), Ping Yuan(平原), Jia Lihua(贾丽华), Wang Yingli(王莹利), Xu Guangwen(许光文), Gu Fangna(古芳娜), Su Fabing(苏发兵). Research advances in methanation catalysts and their catalytic mechanisms [J]. The Chinese Journal of Process Engineering(过程工程学报), 2011, 11(05): 880-893.
[42]
Zhang Cheng(张成). Research progress of methanation of carbon monoxide and carbon dioxide [J]. Chemical Industry and Engineering Progress(化工进展), 2007, 26(9): 1269-1273.
[43]
Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Reviews, 2011, 40(7): 3703-3727.
[44]
Wang W, Gong J. Methanation of carbon dioxide: an overview [J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 2-10.
[45]
Cui Kaikai(崔凯凯), Zhou Guilin(周桂林), Xie Hongmei(谢红梅). Research progress in CO2 methanation catalysts [J]. Chemical Industry and Engineering Progress(化工进展), 2015, 34(3): 724-730,737.
[46]
Vasudevan P T, Zhang F. Characterization of supported molybdenum sulfide catalyst ex ammonium tetrathiomolybdate [J]. Applied Catalysis A: General, 1994, 112(2): 161-173.
[47]
Wang H, Li Z, Wang B, Ma X, Qin S, Sun S, Sun Q. Precursor effect on catalytic properties of Mo-based catalyst for sulfur-resistant methanation [J]. Korean Journal of Chemical Engineering, 2014, 31(12): 2157-2161.
[48]
Kim M Y, Ha S B, Koh D J, Byun C, Park E D. CO methanation over supported Mo catalysts in the presence of H2S [J]. Catalysis Communications, 2013, 35: 68-71.
[49]
Fu Yilu(伏义路), Lu Weijie(陆炜杰), Huang Zhigang(黄志刚), Jiang Jiale(姜家乐). Study of methanation and O2 chemisorption with several supported sulfide molybdenum catalysts [J]. Journal of China University of Science and Technology(中国科学技术大学学报), 1989, 16(2): 171-177.
[50]
Chen J, Maugé F, El Fallah J, Oliviero L. IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts -a step forward to differentiate the reactivity of M-edge and S-edge [J]. Journal of Catalysis, 2014, 320(1): 170-179.
[51]
Li Z, Tian Y, He J, Wang B, Ma X. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst [J]. Journal of Energy Chemistry, 2014, 23(5): 625-632.
[52]
El-Sharkawy E A, Khder A S, Ahmed A I. Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts [J]. Microporous and Mesoporous Materials, 2007, 102(1/2/3): 128-137.
[53]
Zhang Shenghong(张胜红), Zhang Hongpeng(张鸿鹏), Li Weizhen(李为臻), Zhang Wei(张伟), Huang Hua(黄华), Liu Haichao(刘海超). Effects of zirconia crystallite phases on the structures of MoOx/ZrO2 catalysts and their properties in the selective oxidation of methanol [J]. Acta Phys. Chim. Sin.(物理化学学报), 2010, 26(7): 1879-1886.
[54]
Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys [J]. Catalysis Communications, 2006, 7(1): 24-28.
[55]
Rhodes M D, Bell A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts(Ⅰ): Steady-state studies [J]. Journal of Catalysis, 2005, 233(1): 198-209.
[56]
He D, Ding Y, Luo H, Li C. Effects of zirconia phase on the synthesis of higher alcohols over zirconia and modified zirconia [J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(1/2): 267-271.
[57]
Zhuang Q, Qin Y, Chang L. Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming [J]. Applied Catalysis, 1991, 70(1): 1-8.
[58]
Xu G, Shi K, Gao Y, Xu H, Wei Y. Studies of reforming natural gas with carbon dioxide to produce synthesis gas(Ⅹ): The role of CeO2 and MgO promoters [J]. Journal of Molecular Catalysis A: Chemical, 1999, 147(1/2): 47-54.
[59]
Qi Xingguo(祁兴国), Dong Qun(董群), Ma Shoubo(马守波), Zhao Fajun(赵法军), Sun Yanping(孙艳萍). Edge structures of molybdenum-based sulfide catalyst [J]. Chemical Industry and Engineering Progress(化工进展), 2004, 23(12): 1291-1295.
[60]
Jiang M, Wang B, Yao Y, Li Z, Ma X, Qin S, Sun Q. Effect of sulfidation temperature on CoO-MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation [J]. Catalysis Science and Technology, 2013, 3(10): 2793-2800.
[61]
Wang B, Hu Z, Liu S, Jiang M, Yao Y, Li Z, Ma X. Sulphidation temperature on the performance of NiO-MoO3/γ-Al2O3 catalysts for sulphur-resistant methanation [J]. RSC Advances, 2014, 4(99): 56174-56182.
[62]
Li Zhenhua(李振花), Wang Erdong(王二东), Ding Guozhong(丁国忠), Shang Yuguang(尚玉光), Wang Haiyang(王海洋), Wang Baowei(王保伟), Lü Jing(吕静), Ma Xinbin(马新宾), Qin Shaodong(秦绍东). Effect of Mo loading and additive Co on activity of sulfur-resistant methanation catalyst [J]. Journal of Tianjin University: Science and Technology(天津大学学报), 2013, 46(6): 546-552.
[63]
Lin C, Wang H, Li Z, Wang B, Ma X, Qin S, Sun Q. Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst [J]. Frontiers of Chemical Science and Engineering, 2013, 7(1): 88-94.
[64]
Shang Yuguang(尚玉光), Wang Baowei(王保伟), Li Zhenhua(李振花), Ma Xinbin(马新宾), Qin Shaodong(秦绍东), Sun Qi(孙琦). Mo-based catalyst modified with sulfur for sulfur-resistant methanation [J]. Petrochemical Technology(石油化工), 2012, 41(9): 999-1004.
[65]
Arnoldy P, van den Heijkant J A M, de Bok G D, Moulijn J A. Temperature-programmed sulfiding of MoO3 Al2O3 catalysts [J]. Journal of Catalysis, 1985, 92(1): 35-55.
[66]
Farag H. Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors [J]. Energy & Fuels, 2002, 16: 944-950.
[67]
De Boer M, Van Dillen A J, Koningsberger D C, Geus J W. The structure of highly dispersed SiO2-supported molybdenum oxide catalysts during sulfidation [J]. Journal of Physical Chemistry, 1994, 98(32): 7862-7870.
[68]
Scheffer B, Arnoldy P, Moulijn J A. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica, and carbon [J]. Journal of Catalysis, 1988, 112(2): 516-527.
[69]
Weber Th, Muijsers J C, Van Wolput J H M C, Verhagen C P J, Niemantsverdriet J W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy [J]. Journal of Physical Chemistry, 1996, 100(33): 14144-14150.
[70]
Shi X R, Wang J, Hermann K. Theoretical cluster studies on the catalytic sulfidation of MoO3 [J]. Journal of Physical Chemistry C, 2010, 114(14): 6791-6801.
[71]
Ratnasamy P, Sivasanker S. Structural chemistry of Co-Mo-Alumnina catalysts [J]. Catalysis Reviews: Science and Engineering, 1980, 22(3): 401-429.
[72]
Tops?e H, Clausen B S, Candia R, Wivel C, M?rup S. In situ M?ssbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: evidence for and nature of a CoMoS phase [J]. Journal of Catalysis, 1981, 68(2): 433-452.
[73]
Tops?e H, Clausen, B S. Importance of Co-Mo-S type structures in hydrodesulfurization [J]. Catalysis reviews, 1984, 26(3/4): 395-420.
[74]
Lauritsen J V, Helveg S, L?gsgaard E, Stensgaard I, Clausen B S, Tops?e H, Besenbacher F. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts [J]. Journal of Catalysis, 2001, 197(1): 1-5.
[75]
Coulier L, De Beer V H J, Van Veen J A R, Niemantsverdriet J W. On the formation of cobalt-molybdenum sulfides in silica-supported hydrotreating model catalysts [J]. Topics in Catalysis, 2000, 13(1/2): 99-108.
[76]
Van Veen J A R, Gerkema E, Van Der Kraan A M, Knoester A. A real support effect on the activity of fully sulphided CoMoS for the hydrodesulphurization of thiophene [J]. Journal of the Chemical Society, Chemical Communications, 1987, 22: 1684-1686.
[77]
Bouwens S M A M, Vanzon F B M, Vandijk M P, Vanderkraan A M, Debeer V H J, Vanveen J A R, Koningsberger D C. On the Structural differences between alumina-supported CoMoS Type I and alumina-, silica-, and carbon-supported CoMoS Type II Phases studied by XAFS, MES, and XPS [J]. Journal of Catalysis, 1994, 146(2): 375-393.
[78]
Al-Zeghayer Y S, Sunderland P, Al-Masry W, Al-Mubaddel F, Ibrahim A A, Bhartiya B K, Jibril B Y. Activity of CoMo/γ-Al2O3 as a catalyst in hydrodesulfurization: Effects of Co/Mo ratio and drying condition [J]. Applied Catalysis A: General, 2005, 282(1/2): 163-171.
[79]
Palcheva R, Spojakina A, Jiratova K, Kaluza L. Effect of Co on HDS activity of alumina-supported heteropolymolybdate [J]. Catalysis Letters, 2010, 137(3/4): 216-223.
[80]
Wang B, Yao Y, Jiang M, Li Z, Ma X, Qin S, Sun Q. Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation [J]. Journal of Energy Chemistry, 2014, 23(1): 35-42.
[81]
Venezia A M, La Parola V, Deganello G, Cauzzi D, Leonardi G, Predieri G. Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts [J]. Applied Catalysis A: General, 2002, 229(1/2): 261-271.
[82]
Kempegowda R S, Laosiripojana N, Assabumrungrat S. High temperature desulfurization over nano-scale high surface area ceria for application in SOFC [J]. Korean Journal of Chemical Engineering, 2008, 25(2): 223-230.
[83]
Jiang M, Wang B, Yao Y, Wang H, Li Z, Ma X, Qin S, Sun Q. Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation [J]. Applied Catalysis A: General, 2014, 469: 89-97.
[84]
Fan Chongzheng(范崇正), Sun Hanfang(孙汉芳), Huang Xinnan(黄新楠), Jiang Zhanchang(江展昌). The preparation and activity determination of KSM-01 sulfided molybdenum catalyst for CO methanation reaction [J]. Journal of Fuel Chemistry and Technology(燃料化学学报), 1988, 16(2): 188-192.
[85]
Shi X R, Jiao H, Hermann K, Wang J. CO hydrogenation reaction on sulfided molybdenum catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2009, 312(1/2): 7-17.