全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

一种具有高CO吸附容量和高CO/N2及CO/CO2分离选择性的CuCl@β吸附剂

DOI: 10.11949/j.issn.0438-1157.20150836, PP. 3556-3562

Keywords: CuCl@β分子筛,CO吸附,吸附剂,选择性

Full-Text   Cite this paper   Add to My Lib

Abstract:

研制了一种新型的CuCl@β分子筛吸附剂材料,它不仅对CO有着高吸附容量,而且对CO/N2和CO/CO2的二元混合气有着高吸附选择性。利用自发单层分散的原理制备了一系列的CuCl@β分子筛材料,分别应用氮气吸附以及XRD进行表征。CO在CuCl@β分子筛上吸附等温线和动态透过曲线分别通过静态吸附和固定床实验获得。依据IAST理论模型计算了CuCl@β分子筛对CO/N2二元混合物和CO/CO2二元混合物的吸附选择性。研究结果表明:(1)氯化亚铜的负载增强了一氧化碳在CuCl@β分子筛上的吸附容量,其最佳负载量为0.4g·g-1。(2)CuCl@β分子筛吸附剂在增强CO的吸附量的同时,还降低了对二氧化碳和氮气的吸附。由于Cu+-COπ位络合键的存在,提高了CuCl@β分子筛对二元混合物CO/N2和CO/CO2的吸附选择性。(3)在低压下(0~10kPa)下0.4CuCl@β分子筛对CO/N2和CO/CO2的吸附选择性分别高达1600~5200和120~370,远大于原始的β分子筛。CuCl@β分子筛对CO有着超高吸附容量以及吸附选择性,将会是一种很有潜力的CO分离提纯材料。

References

[1]  Yang R T. Adsorbents Fundamentals and Application [M]. John Wiley & Sons, Inc, 2003: 100-106.
[2]  Xie Y, Zhang J, Qiu J, Tong X, Fu J, Yang G, et al. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2 [J]. Adsorption, 1997, 3 (1): 27-32.
[3]  Ma J, Li L, Ren J, Li R. CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route [J]. Separation and Purification Technology, 2010, 76 (1): 89-93.
[4]  Huang W, Zhou X, Xia Q, Peng J, Wang H, Li Z. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4 [J]. Ind. Eng. Chem. Res., 2014, 53 (27): 11176-11184.
[5]  Zhao Z, Wang S, Yang Y, Li X, Li J, Li Z. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1) [J]. Chem. Eng. J., 2015, 259: 79-89.
[6]  Song C. Fuel processing for low-temperature and high- temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century [J]. Catal. Today, 2002, 77 (1/2): 17-49.
[7]  Lithoxoos G P, Labropoulos A, Peristeras L D, Kanellopoulos N, Samios J, Economou I G. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study [J]. The Journal of Supercritical Fluids, 2010, 55 (2): 510-523.
[8]  Wang Litao(王丽涛), Zhang Qiang (张强), Hao Jiming (郝吉明), He Kebin (贺克斌). Anthropogenic CO emission inventory of mainland China [J]. Acta Scientiae Circumstantiae (环境科学学报), 2005, (12): 8-13.
[9]  Munusamy K, Sethia G, Patil D V, Somayajulu Rallapalli P B, Somani R S, Bajaj H C. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies [J]. Chem. Eng. J., 2012, 195/196: 359-368.
[10]  García E J, Mowat J P S, Wright P A, Pérez-Pellitero J, Jallut C, Pirngruber G D. Role of structure and chemistry in controlling separations of CO2/CH4 and CO2/CH4/CO mixtures over honeycomb MOFs with coordinatively unsaturated metal sites [J]. The Journal of Physical Chemistry C, 2012, 116 (50): 26636-26648.
[11]  Peng J, Xian S, Xiao J, Huang Y, Xia Q, Wang H, et al. A supported Cu(Ⅰ)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity [J]. Chem. Eng. J., 2015, 270: 282-289.
[12]  Raki? V, Rac V, Dondur V, Auroux A. Competitive adsorption of N2O and CO on CuZSM-5, FeZSM-5, CoZSM-5 and bimetallic forms of ZSM-5 zeolite [J]. Catal. Today, 2005, 110 (3/4): 272-280.
[13]  Xiao J, Sitamraju S, Chen Y, Janik M, Song C. Air-promoted adsorptive desulfurization over Ti0.9Ce0.1O2 mixed oxides from diesel fuel under ambient conditions [J]. ChemCatChem., 2013, 5(12): 3582- 3586.
[14]  Wirawan S K, Creaser D. Multicomponent H2/CO/CO2 adsorption on BaZSM-5 zeolite [J]. Separation and Purification Technology, 2006, 52 (2): 224-231.
[15]  Delgado M R, Arean C O. Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies [J]. Energy, 2011, 36 (8): 5286-5291.
[16]  Miyajima H, Kodama A, Goto M, Hirose T. Improved purge step in pressure swing adsorption for CO purification [J]. Adsorption, 2005, 11(1): 625-630.
[17]  Iyuke S E, Daud W R W, Mohamad A B, Kadhum A A H, Fisal Z, Shariff A M. Application of Sn-activated carbon in pressure swing adsorption for purification of H2 [J]. Chem. Eng. Sci., 2000, 55 (20): 4745-4755.
[18]  Grande C A, Lopes F V S, Ribeiro A M, Loureiro J M, Rodrigues A E. Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon [J]. Sep. Sci. Technol., 2008, 43 (6): 1338-1364.
[19]  Lopes F V S, Grande C A, Ribeiro A M, Loureiro J M, Evaggelos O, Nikolakis V, et al. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production [J]. Sep. Sci. Technol., 2009, 44 (5): 1045-1073.
[20]  ?i?manec P, Bulánek R, Frydová E, Kolá?ová M. Study of thermodynamic characteristics of CO adsorption on Li exchanged zeolites [J]. Adsorption, 2013, 19 (2-4): 381-389.
[21]  Chavan S, Vitillo J G, Groppo E, Bonino F, Lamberti C, Dietzel P D C, et al. CO Adsorption on CPO-27-Ni coordination polymer: spectroscopic features and Interaction energy [J]. The Journal of Physical Chemistry C, 2009, 113 (8): 3292-3299.
[22]  Leclerc H, Vimont A, Lavalley J C, Daturi M, Wiersum A D, Llwellyn P L, et al. Infrared study of the influence of reducible iron(Ⅲ) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100 [J]. Phys. Chem. Chem. Phys., 2011, 13 (24): 11748-11756.
[23]  Chowdhury P, Mekala S, Dreisbach F, Gumma S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: effect of open metal sites and adsorbate polarity [J]. Micropor. Mesopor. Mat., 2012, 152: 246-252.
[24]  Sato H, Kosaka W, Matsuda R, Hori A, Hijikata Y, Belosludov R V, et al. Self-accelerating CO sorption in a soft nanoporous crystal [J]. Science, 2014, 343 (6167): 167-170.
[25]  Sethia G, Dangi G P, Jetwani A L, Somani R S, Bajaj H C, Jasra R V. Equilibrium and dynamic adsorption of carbon monoxide and nitrogen on ZSM-5 with different SiO2/Al2O3 Ratio [J]. Sep. Sci. Technol., 2010, 45 (3): 413-420.
[26]  Xie Youchang (谢有畅), Zhang Jiaping (张佳平), Tong Xianzhong (童显忠). High efficiency CO adsorbent CuCl/zeolite [J]. Chemical Research in Chinese Universicties (高等学校化学学报), 1997, 18 (7): 1159-1165.
[27]  Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption [J]. Ind. Eng. Chem. Res., 2002, 41 (10): 2487-2496.
[28]  Yang R T, Hernández-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions [J]. Science, 2003, 301 (5629):79-81.
[29]  Wang Y, Yang R T, Heinzel J M. Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials [J]. Chem. Eng. Sci., 2008, 63 (2): 356-365.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133