全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Manipulating the Propagation of Solitons with Solid-Core Photonic Bandgap Fibers

DOI: 10.1155/2012/157319

Full-Text   Cite this paper   Add to My Lib

Abstract:

We review the dynamics of soliton self-frequency shift induced by Raman gain in special solid-core photonic bandgap fibers and its consequences in terms of supercontinuum generation. These photonic bandgap fibers have been designed to allow nonlinear experiments in the first bandgap without suffering from significant loss even when working close to the photonic bandgap edge. We studied experimentally, numerically, and analytically the extreme deceleration of the soliton self-frequency shift at the long-wavelength edge of the first transmission window. This phenomenon is interpreted as being due to a large variation of the group-velocity dispersion in this spectral range and has been obtained with no significant power loss. Then, we investigated experimentally and numerically the generation of supercontinuum in this kind of fibers, in both spectral and temporal domains. In particular, we demonstrated an efficient tailoring of the supercontinuum spectral extension as well as a strong noise reduction at its long-wavelength edge. 1. Introduction Solid-core photonic bandgap (PBG) fibers are one class of microstructured optical fibers in which light is confined in a low-index solid core by the PBGs of the cladding [1]. In the case of two-dimensional PBGs, the periodic microstructured cladding is usually composed of periodic high-index inclusions embedded in a low-index background [1]. The core region then corresponds to a defect (lack of inclusion) in the center of the periodic structure. Because of the intrinsic nature of the PBG waveguidance, the fiber transmission properties are characterized by discrete spectral bands [1, 2] in which the group-velocity dispersion (GVD), attenuation, and effective mode area of the fundamental core mode are strongly wavelength dependent [3], especially near the PBG edges [1, 4]. These singular characteristics are thus of particular interest in the field of nonlinear (NL) fiber optics. The potential of solid-core PBG fibers for NL propagation experiments has already been pointed out by the report of soliton propagation and phase-matched dispersive wave generation [5, 6], even across different PBG [7]. Degenerate four-wave mixing [8], frequency doubling and tripling [9], and supercontinuum (SC) generation across adjacent PBGs have also been investigated numerically [10]. In this paper, we present an overview of our recent work showing how the particular properties of solid-core PBG fibers can influence soliton propagation and SC generation. First, we detail the linear properties of the fabricated solid-core PBG fibers under

References

[1]  F. Luan, A. K. George, T. D. Hedley, et al., “All-solid photonic bandgap fiber,” Optics Letters, vol. 29, no. 20, pp. 2369–2371, 2004.
[2]  A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Optics Express, vol. 13, no. 7, pp. 2503–2511, 2005.
[3]  V. Pureur, A. Betourne, G. Bouwmans, et al., “Overview on solid core photonic bandgap fibers,” Fiber and Integrated Optics, vol. 28, no. 1, pp. 27–50, 2009.
[4]  G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region ( ?dB/km) around 1550?nm,” Optics Express, vol. 13, pp. 8452–8459, 2005.
[5]  A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Optics Letters, vol. 30, no. 8, pp. 830–832, 2005.
[6]  B. Kibler, T. Martynkien, M. Szpulak, et al., “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Optics Express, vol. 17, no. 12, pp. 10393–10398, 2009.
[7]  A. S. Cerqueira Jr., C. M. B. Cordeiro, F. Biancalana, et al., “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Optics Letters, vol. 33, no. 18, pp. 2080–2082, 2008.
[8]  P. D. Rasmussen, J. Laegsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Optics Express, vol. 16, no. 6, pp. 4059–4068, 2008.
[9]  A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Optics Express, vol. 16, no. 18, pp. 14255–14262, 2008.
[10]  V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Optics Letters, vol. 35, no. 16, pp. 2813–2815, 2010.
[11]  O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” Journal of the Optical Society of America B, vol. 27, no. 11, pp. 2328–2335, 2010.
[12]  A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Optics Letters, vol. 34, no. 20, pp. 3083–3085, 2009.
[13]  O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A. Kudlinski, “Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers,” Optics Express, vol. 18, no. 23, pp. 24352–24360, 2010.
[14]  A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Optics Letters, vol. 32, no. 12, pp. 1719–1721, 2007.
[15]  M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Optics Express, vol. 15, no. 21, pp. 13783–13795, 2007.
[16]  M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. 17, no. 3, pp. 404–407, 1981.
[17]  G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, New York, NY, USA, 4th edition, 2007.
[18]  E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, et al., “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Letters, vol. 41, pp. 294–297, 1985.
[19]  Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Journal of Quantum Electronics, vol. 23, no. 5, pp. 510–524, 1987.
[20]  P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. 23, no. 11, pp. 1938–1946, 1987.
[21]  F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Optics Letters, vol. 11, no. 10, pp. 659–661, 1986.
[22]  J. P. Gordon, “Theory of the soliton self-frequency shift,” Optics Letters, vol. 11, no. 10, pp. 662–664, 1986.
[23]  J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schr?dinger equation,” Optics Express, vol. 15, no. 24, pp. 16110–16123, 2007.
[24]  J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, Eds., chapter 3, Cambridge University Press, Cambridge, UK, 2010.
[25]  D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” Journal of the Optical Society of America B, vol. 19, no. 12, pp. 2886–2892, 2002.
[26]  J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics, vol. 78, no. 4, pp. 1135–1184, 2006.
[27]  The long-pulse pumping regime refers to cases in which the pump pulse duration is much longer than the MI oscillation period , given by , with the second-order dispersion coefficient, the NL coefficient and P the pump peak power. Cases in which is in the order or less than correspond to the short-pulse pumping regime.
[28]  A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photonics, vol. 1, no. 11, pp. 653–657, 2007.
[29]  J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Optics Express, vol. 16, no. 4, pp. 2670–2675, 2008.
[30]  A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Applied Physics Letters, vol. 92, no. 14, Article ID 141103, 2008.
[31]  A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1556–1564, 2009.
[32]  D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, vol. 450, no. 7172, pp. 1054–1057, 2007.
[33]  J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Optics Express, vol. 16, no. 6, pp. 3644–3651, 2008.
[34]  A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Optics Express, vol. 17, no. 19, pp. 17010–17015, 2009.
[35]  G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Physics Letters, Section A, vol. 374, no. 7, pp. 989–996, 2010.
[36]  F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Optics Express, vol. 13, no. 17, pp. 6615–6625, 2005.
[37]  C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electronics Letters, vol. 45, no. 4, pp. 217–219, 2009.
[38]  H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” Journal of the Optical Society of America B, vol. 16, no. 12, pp. 2223–2232, 1999.
[39]  M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” European Physical Journal, vol. 185, no. 1, pp. 135–144, 2010.
[40]  K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Physics Letters, Section A, vol. 374, no. 34, pp. 3585–3589, 2010.
[41]  M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Physics Letters, Section A, vol. 374, no. 4, pp. 691–695, 2010.
[42]  D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber,” Optics Letters, vol. 31, no. 15, pp. 2323–2325, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133