全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer

DOI: 10.1155/2012/689612

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optical vortex arrays have been generated using simple, novel, and stable reversed-wavefront folding interferometer. Two new interferometric configurations were used for generating a variety of optical vortex lattices. In the first interferometric configuration one cube beam splitter (CBS) was used in one arm of Mach-Zehnder interferometer for splitting and combining the collimated beam, and one mirror of another arm is replaced by second CBS. At the output of interferometer, three-beam interference gives rise to optical vortex arrays. In second interferometric configuration, a divergent wavefront was made incident on a single CBS which splits and combines wavefronts leading to the generation of vortex arrays due to four-beam interference. It was found that the orientation and structure of the optical vortices can be stably controlled by means of changing the rotation angle of CBS. 1. Introduction Optical vortices (OVs) are point phase defects, also called phase singularities in the distribution of optical wave-fields where both real and imaginary values of the optical fields are zero [1]. An interesting peculiarity of point phase defects is the helicoidal structure of the wave front around the defect axis and is described as exp( Φ), where l is the topological charge and Φ is the azimuthal angle around the defect axis. The magnitude of topological charge determines the degree of circulation, that is, the number of 2π cycles of phase accumulation around the vortex point. The sign of topological charge defines the handedness or helicity of the phase singular beam along the propagation direction of the -axis. An interesting aspect of a vortex beam is that it possesses orbital angular momentum (OAM). Optical vortices play significant role for studying OAM of light fields [2, 3] and have been widely used in the area of optical tweezers [4], singular optics [5], optical solitons [6], and optical metrology [7, 8]. The most commonly used methods for generating OVs with single or multiple charge are synthetic holograms [9], spiral phase plates [10], liquid-crystal cells [11], dielectric wedge [12], and higher-order laser beams [13]. An alternative method for generating OVs efficiently is the use of optical fibers [14] such as, a hollow-core optical fiber for generating doughnut-shaped beam and a holey fiber for generating hollow beam. Recently, there has been great interest for generating optical vortex arrays (OVAs) also called vortex lattices using multiple beam interference [15, 16]. It has been demonstrated that when three or more plane waves overlap in

References

[1]  J. F. Nye and M. V. Berry, “Dislocation in wave trains,” Proceedings of the Royal Society A, vol. 336, pp. 165–190, 1974.
[2]  L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Progress in Optics, vol. 39, pp. 291–372, 1999.
[3]  C.-S. Guo, S.-J. Yue, and G.-X. Wei, “Measuring the orbital angular momentum of optical vortices using a multipinhole plate,” Applied Physics Letters, vol. 94, no. 23, Article ID 231104, 3 pages, 2009.
[4]  K. T. Gahagan and G. A. Swartzlander Jr., “Optical vortex trapping of particles,” Optics Letters, vol. 21, no. 11, pp. 827–829, 1996.
[5]  M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Physical Review A, vol. 56, no. 5, pp. 4064–4075, 1997.
[6]  C. T. Law and G. A. Swartzlander, “Optical vortex solitons and the stability of dark soliton stripes,” Optics Letters, vol. 18, no. 8, pp. 586–588, 1993.
[7]  W. Wang, T. Yokozeki, R. Ishijima et al., “Optical vortex metrology for nanometric speckle displacement measurement,” Optics Express, vol. 14, no. 1, pp. 120–127, 2006.
[8]  W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, and S. G. Hanson, “Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern,” Optics Express, vol. 14, no. 22, pp. 10195–10206, 2006.
[9]  N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Optics Letters, pp. 221–223, 1992.
[10]  K. J. Moh, X.-C. Yuan, W. C. Cheong et al., “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Applied Optics, vol. 45, no. 6, pp. 1153–1161, 2006.
[11]  D. Ganic, X. Gan, M. Gu et al., “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Optics Letters, vol. 27, no. 15, pp. 1351–1353, 2002.
[12]  Y. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Optics Letters, vol. 30, no. 18, pp. 2472–2474, 2005.
[13]  C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” Journal of the Optical Society of America B, vol. 7, pp. 1034–1038, 1990.
[14]  R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Optics Communications, vol. 281, no. 13, pp. 3414–3420, 2008.
[15]  J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Optics Communications, vol. 198, no. 1–3, pp. 21–27, 2001.
[16]  J. Masajada, A. Popio?ek-Masajada, E. Fr?czek, and W. Fr?czek, “Vortex points localization problem in optical vortices interferometry,” Optics Communications, vol. 234, no. 1–6, pp. 23–28, 2004.
[17]  K. O'Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Optics Express, vol. 14, no. 7, pp. 3039–3044, 2006.
[18]  S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Applied Optics, vol. 46, no. 15, pp. 2893–2898, 2007.
[19]  S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Applied Optics, vol. 46, no. 32, pp. 7862–7867, 2007.
[20]  J. Masajada, A. Popio?ek-Masajada, and M. Leniec, “Creation of vortex lattices by a wavefront division,” Optics Express, vol. 15, no. 8, pp. 5196–5207, 2007.
[21]  P. Kurzynowski, W. A. Wozniak, and E. Fr?czek, “Optical vortices generation using the Wollaston compensator,” Applied Optics, vol. 45, pp. 7898–7903, 2006.
[22]  P. Kurzynowski and M. Borwińska, “Generation of vortex-type markers in a one-wave setup,” Applied Optics, vol. 46, no. 5, pp. 676–679, 2007.
[23]  D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Vortex lattice generation using interferometric techniques based on lateral shearing,” Optics Communications, vol. 282, no. 14, pp. 2692–2698, 2009.
[24]  J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Optics Communications, vol. 239, no. 4–6, pp. 373–381, 2004.
[25]  A. Popio?ek-Masajada, M. Borwińska, and W. Fr?czek, “Testing a new method for small-angle rotation measurements with the optical vortex interferometer,” Measurement Science and Technology, vol. 17, no. 4, pp. 653–658, 2006.
[26]  A. Popio?ek-Masajada, M. Borwinńska, and B. Dubik, “Reconstruction of a plane wave's tilt and orientation using an optical vortex interferometer,” Optical Engineering, vol. 46, no. 7, Article ID 073604, 2007.
[27]  M. Borwińska, A. Popio?ek-Masajada, and P. Kurzynowski, “Measurements of birefringent media properties using optical vortex birefringence compensator,” Applied Optics, vol. 46, no. 25, pp. 6419–6426, 2007.
[28]  M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Optics Letters, vol. 31, no. 7, pp. 861–863, 2006.
[29]  J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Optics Communications, vol. 279, no. 2, pp. 235–239, 2007.
[30]  Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Optics Letters, vol. 34, no. 8, pp. 1276–1278, 2009.
[31]  M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and inteferometry,” Journal of the Optical Society of America, vol. 72, no. 1, pp. 156–160, 1982.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133