全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
菌物学报  2015 

后基因组时代的真菌天然产物发现

DOI: 10.13346/j.mycosystema.150098, PP. 914-926

Keywords: 次级代谢产物,基因组挖掘,沉默基因簇,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

真菌产生的次级代谢产物是新药发现的重要来源之一,然而近年来传统的真菌天然产物发现方法在大量真菌基因组测序完成的时代遇到了很大的挑战。如何利用这些基因组数据来发现真菌中新的天然产物已成为后基因组时代天然产物发现的研究重点和热点。本综述先后介绍了真菌天然产物的类型及其相应基因簇和骨架酶的特征,基于基因组挖掘技术发展而来的天然产物发现新策略,以及利用合成生物学理念和技术在真菌天然产物发现中的应用现状,最后展望了后基因组时代中的天然产物发现研究前沿及基因组数据在后基因组时代对真菌天然产物发现的应用前景。

References

[1]  1 Ahuja M, Chiang YM, Chang SL, Praseuth MB, Entwistle R, Sanchez JF, Lo HC, Yeh HH, Oakley BR, Wang CC, 2012. Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. Journal of the American Chemical Society, 134: 8212-8221 [本文引用:
[2]  2 Alkhayyat F, Yu JH, 2014. Upstream regulation of mycotoxin biosynthesis. Advances in Applied Microbiology, 86: 251-278 [本文引用:
[3]  3 Baker SE, Kroken S, Inderbitzin P, Asvarak T, Li BY, Shi L, Yoder OC, Turgeon BG, 2006. Two polyketide synthase encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Molecular Plant-Microbe Interactions, 19: 139-149 [本文引用:
[4]  4 Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH, 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320: 1504-1506 [本文引用:
[5]  5 Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C, 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nature Chemical Biology, 3(4): 213-217 [本文引用:
[6]  6 Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP, 2006. Genomic mining for Aspergillus natural products. Chemistry & Biology, 13: 31-37 [本文引用:
[7]  7 Bouhired S, Weber M, Kempf-Sontag A, Keller NP, Hoffmeister D, 2007. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology, 44: 1134-1145 [本文引用:
[8]  8 Bradshaw RE, Slot JC, Moore GG, Chettri P, de Wit PJ, Ehrlich KC, Ganley AR, Olson MA, Rokas A, Carbone I, Cox MP, 2013. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen. New Phytologist, 198: 525-535 [本文引用:
[9]  9 Brakhage AA, 2013. Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11(1): 21-32 [本文引用:
[10]  10 Chiang YM, Lee KH, Sanchez JF, Keller NP, Wang CC, 2009a. Unlocking fungal cryptic natural products. Natural Product Communications, 4(11): 1505-1510 [本文引用:
[11]  11 Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CC, Oakley BR, 2013. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. Journal of the American Chemical Society, 135(20): 7720-7731 [本文引用:
[12]  12 Chiang YM, Szewczyk E, Davidson AD, Keller NP, Oakley BR, Wang CCC, 2009b. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. Journal of the American Chemical Society, 131: 2965-2970 [本文引用:
[13]  13 Cobb RE, Zhao H, 2012. Direct cloning of large genomic sequences. Nature Biotechnology, 30: 405-406 [本文引用:
[14]  14 Du L, King JB, Morrow BH, Shen JK, Miller AN, Cichewicz RH, 2012. Diarylcyclopentendione metabolite obtained from a Preussia typharum isolate procured using an unconventional cultivation approach. Journal of Natural Products, 75: 1819-1823 [本文引用:
[15]  15 Du L, Lou L, 2010. PKSs and NRPSs releasing mechanisms. Natural Product Reports, 27: 255-278 [本文引用:
[16]  16 Fernand es M, Keller NP, Adams TH, 1998. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Molecular Microbiology, 28(6): 1355-1365 [本文引用:
[17]  17 Fischbach MA, Walsh CT, 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chemical Reviews, 106(8): 3468-3496 [本文引用:
[18]  18 Gerea AL, Branscum KM, King JB, You J, Powell DR, Miller AN, Spear JR, Cichewicz RH, 2012. Secondary metabolites produced by fungi derived from a microbial mat encountered in an iron-rich natural spring. Tetrahedron Letters, 53: 4202-4205 [本文引用:
[19]  19 He Q, Li QL, Wang LF, Hong B, 2012. Strategies of genome mining for novel natural products. Journal of International Pharmaceutical Research, 39(1): 1-7 (in Chinese) [本文引用:
[20]  20 Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH, 2009. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Organic & Biomolecular Chemistry, 7: 435-438 [本文引用:
[21]  21 Hoffmeister D, Keller NP, 2007. Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports, 24: 393-416 [本文引用:
[22]  22 Jain S, Keller NP, 2013. Insights to fungal biology through LaeA sleuthing. Fungal Biology Reviews, 27: 51-59 [本文引用:
[23]  23 Keating TA, Walsh CT, 1999. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Current Opinion in Chemical Biology, 3(5): 598-606 [本文引用:
[24]  24 Keller NP, Turner G, Bennett JW, 2005. Fungal secondary metabolism from biochemistry to genomics. Nature Review Microbiology, 3: 937-947 [本文引用:
[25]  25 Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND, 2010. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology, 47(9): 736-741 [本文引用:
[26]  26 Konig CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C, 2013. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. ChemBioChem, 14: 938-942 [本文引用:
[27]  27 Lazarus CM, Williams K, Bailey AM, 2014. Reconstructing fungal natural product biosynthetic pathways. Natural Product Reports, 31(10): 1339-1347 [本文引用:
[28]  28 Li J, Neubauer P, 2014. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. New Biotechnology, 31(6): 579-585 [本文引用:
[29]  29 Lin HC, Chooi YH, Dhingra S, Xu W, Calvo AM, Tang Y, 2013. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of beta-trans-bergamotene. Journal of the American Chemical Society, 135: 4616-4619 [本文引用:
[30]  30 Liu T, Chiang YM, Somoza AD, Oakley BR, Wang CC, 2011. Engineering of an “unnatural” natural product by swapping polyketide synthase domains in Aspergillus nidulans. Journal of the American Chemical Society, 133: 13314-13316 [本文引用:
[31]  31 Luo Y, Cobb RE, Zhao H, 2014. Recent advances in natural product discovery. Current Opinion in Biotechnology, 30: 230-237 [本文引用:
[32]  32 Maiya S, Grundmann A, Li SM, Turner G, 2006. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. ChemBioChem, 7: 1062-1069 [本文引用:
[33]  33 Maiya S, Grundmann A, Li SM, Turner G, 2009. Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genetics and Biology, 46: 436-440 [本文引用:
[34]  34 Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R, 2011. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39: W339-346 [本文引用:
[35]  35 Nguyen T, Ishida K, Jenke-Kodama H, Dittmann E, Gurgui C, Hochmuth T, Taudien S, Platzer M, Hertweck C, Piel J, 2008. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nature Biotechnology, 26(2): 225-233 [本文引用:
[36]  36 Oakley CE, Edgerton-Morgan H, Oakley BR, 2012. Tools for manipulation of secondary metabolism pathways: rapid promoter replacements and gene deletions in Aspergillus nidulans. Methods in Molecular Biology, 944: 143-161 [本文引用:
[37]  37 Palmer JM, Keller NP, 2010. Secondary metabolism in fungi: does chromosomal location matter?Current Opinion in Microbiology, 13: 431-436 [本文引用:
[38]  38 Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP, 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathogens, 3(4): e50 [本文引用:
[39]  39 Sanchez JF, Entwistle R, Corcoran D, Oakley BR, Wang CC, 2012 a. Identification and molecular genetic analysis of the cichorine gene cluster in Aspergillus nidulans. MedChemComm, 3: 997-1002 [本文引用:
[40]  40 Sanchez JF, Entwistle R, Hung JH, Yaegashi J, Jain S, Chiang YM, Wang CC, Oakley BR, 2011. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. Journal of the American Chemical Society, 133: 4010-4017 [本文引用:
[41]  41 Sanchez JF, Somoza AD, Keller NP, Wang CC, 2012 b. Advances in Aspergillus secondary metabolite research in the post-genomic era. Natural Product Reports, 29(3): 351-371 [本文引用:
[42]  42 Sarkar A, Funk AN, Scherlach K, Horn F, Schroeckh V, Chankhamjon P, Westermann M, Roth M, Brakhage AA, Hertweck C, Horn U, 2012. Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures of Aspergillus nidulans. Journal of Biotechnology, 160(1-2): 64-71 [本文引用:
[43]  43 Shao Z, Zhao H, 2012. DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 517: 203-224 [本文引用:
[44]  44 Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP, 2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic Cell, 6: 1656-1664 [本文引用:
[45]  45 Szewczyk E, Chiang YM, Oakley CE, Davidson AD, Wang CCC, Oakley BR, 2008. Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Applied and Environmental Microbiology, 74: 7607-7612 [本文引用:
[46]  46 Tianero MD, Donia MS, Young TS, Schultz PG, Schmidt EW, 2012. Ribosomal route to small-molecule diversity. Journal of the American Chemical Society, 134: 418-425 [本文引用:
[47]  47 Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K, 2013. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Natural Product Reports, 30(8): 1139-1149 [本文引用:
[48]  48 Tudzynski B, 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Frontiers in Microbiology, 5: 1-15 [本文引用:
[49]  49 von Dohren H, Keller U, Vater J, Zocher R, 1997. Multifunctional peptide synthetases. Chemical Reviews, 97(7): 2675-2706 [本文引用:
[50]  50 Wang Q, Wang J, Yu F, Zhu X, Zaleta-Rivera K, Du L, 2006. Mycotoxin fumonisins: health impacts and biosynthetic mechanism. Progress in Natural Science, 16: 7-15 [本文引用:
[51]  51 Weber SS, Polli F, Boer R, Bovenberg RA, Driessen AJ, 2012. Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N acyltransferase. Applied and Environmental Microbiology, 78(19): 7107-7113 [本文引用:
[52]  52 Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CC, Keller NP, 2013 a. Prototype of an intertwined secondary-metabolite supercluster. Proceedings of the National Academy of Sciences of the United States of America, 110(42): 17065-17070 [本文引用:
[53]  53 Wiemann P, Keller NP, 2014. Strategies for mining fungal natural products. Journal of Industrial Microbiology & Biotechnology, 41(2): 301-313 [本文引用:
[54]  54 Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huss K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Munsterkotter M, Freitag M, Humpf HU, Guldener U, Tudzynski B, 2013 b. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens, 9: e1003475 [本文引用:
[55]  55 Wong KH, Todd RB, Oakley BR, Oakley CE, Hynes MJ, Davis MA, 2008. Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genetics and Biology, 45: 728-737 [本文引用:
[56]  56 Yaegashi J, Oakley BR, Wang CC, 2014. Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. Journal of Industrial Microbiology and Biotechnology, 41(2): 433-442 [本文引用:
[57]  57 Yeh HH, Chang SL, Chiang YM, Bruno KS, Oakley BR, Wu TK, Wang CC, 2013. Engineering fungal nonreducing polyketide synthase by heterologous expression and domain swapping. Organic Letters, 15: 756-759 [本文引用:
[58]  58 Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, Wang CC, Bok JW, Rohlfs M, Keller NP, 2012. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Molecular Microbiology, 83(5): 1024-1034 [本文引用:
[59]  59 Yin WB, Baccile JA, Bok JW, Chen Y, Keller NP, Schroeder FC, 2013 b. A nonribosomal peptide synthetase-derived iron(III) complex from the pathogenic fungus Aspergillus fumigatus. Journal of the American Chemical Society, 135: 2064-2067 [本文引用:
[60]  60 Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC, Tang Y, 2013 a. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synthetic Biology, 2(11): 629-634 [本文引用:
[61]  61 Yin WB, Keller NP, 2011. Transcriptional regulatory elements in fungal secondary metabolism. The Journal of Microbiology, 49(3): 329-339 [本文引用:
[62]  62 Zhou H, Gao Z, Qiao K, Wang J, Vederas JC, Tang Y, 2012. A fungal ketoreductase domain that displays substrate-dependent stereospecificity. Nature Chemical Biology, 8: 331-333 [本文引用:
[63]  63 何庆, 李青连, 王丽非, 洪斌, 2012. 基于微生物基因组的新型天然产物发现策略. 国际药学研究杂志, 39(1): 1-7 [本文引用:

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133