全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数字高程模型在活动断层位置及地表变形变位特征提取研究中的应用

DOI: 10.18306/dlkxjz.2015.10.009, PP. 1288-1296

Keywords: 数字高程模型(DEM),激光雷达,活动断层,地表变形变位特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

活动断层的位置分布及其地表变形变位特征的准确识别是研究和评价活动断层的基础,国内外学者利用数字高程模型(DEM)对断层提取进行了大量研究。本文基于DEM的活动断层位置的提取方法进行综述,总结了DEM提取断层位置的地貌形态特征分析、图像处理以及综合处理提取方法,突出介绍了高分辨率DEM在详细的断层位置分布提取中的优势,DEM在断层地表变形变位及其特征参数提取研究中的最新应用进展。随着高分辨率DEM的快速发展,DEM及其空间分析技术已成为一种常见的地学研究方法,将其与野外调查、遥感、测年等技术结合进行综合分析,能够促进对活动断层的深入研究,并成为断层定量化研究强有力的技术手段。

References

[1]  1 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1): 41-45.
[2]  1 [Liu J, Chen T, Zhang P Z, et al.2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45.]
[3]  2 Argialas D P, Mavrantza O D.2004. Comparison of edge detection and Hough transform techniques for the extraction of geologic features[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34: 790-795.
[4]  3 Arrowsmith J R, Zielke O.2009. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment[J]. Geomorphology, 113(1-2): 70-81.
[5]  4 Begg J G, Mouslopoulou V.2010. Analysis of late Holocene faulting within an active rift using LiDAR, Taupo Rift, New Zealand[J]. Journal of Volcanology and Geothermal Research, 190(1-2): 152-167.
[6]  5 Brunori C A, Civico R, Cinti F R, et al.2013. Characterization of active fault scarps from LiDAR data: a case study from Central Apennines (Italy)[J]. International Journal of Geographical Information Science, 27(7): 1405-1416.
[7]  6 Burbank D W, Anderson R S.2011. Tectonic Geomorphology[M]. 2nd ed. Oxford, UK: Wiley-Blackwell.
[8]  7 Chan Y C, Chen Y G, Shih T Y, et al.2007. Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: detailed geomorphic features and their structural implications[J]. Journal of Asian Earth Sciences, 31(3): 303-316.
[9]  8 Chen T, Zhang P Z, Liu J, et al.2014. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20): 2396-2409.
[10]  9 Chorowicz J, Collet B, Bonavia F F, et al.1998. The Tana Basin, Ethiopia: intra-plateau uplift, rifting and subsidence[J]. Tectonophysics, 295(3): 351-367.
[11]  10 Chorowicz J, Dhont D, Gündo?du N.1999. Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model[J]. Journal of Structural Geology, 21(5): 511-532.
[12]  11 Cowgill E, Bernardin T S, Oskin M E, et al.2012. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 8(4): 787-804.
[13]  12 Cunningham D, Grebby S, Tansey K, et al.2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308.
[14]  13 Demirkesen A C.2008. Digital terrain analysis using Landsat-7 ETM+ imagery and SRTM DEM: a case study of Nevsehir Province (Cappadocia), Turkey[J]. International Journal of Remote Sensing, 29(14): 4173-4188.
[15]  14 Demirkesen A C.2009. Quantifying geological structures of the Nigde Province in central Anatolia, Turkey using SRTM DEM data[J]. Environmental Geology, 56(5): 865-875.
[16]  15 Dumont J F, Santana E, Vilema W.2005. Morphologic evidence of active motion of the Zambapala Fault, Gulf of Guayaquil (Ecuador)[J]. Geomorphology, 65(3): 223-239.
[17]  16 Engelkemeir R M, Khan S D.2008. LiDAR mapping of faults in Houston, Texas, USA[J]. Geosphere, 4(1): 170-182.
[18]  17 Flores-Prieto E, Quénéhervé G, Bachofer F, et al.2015. Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data[J]. Geomorphology, 248: 427-439.
[19]  18 Florinsky I V.1996. Quantitative topographic method of fault morphology recognition[J]. Geomorphology, 16(2): 103-119.
[20]  19 Ganas A, Pavlides S, Karastathis V.2005. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates[J]. Geomorphology, 65(3-4): 301-319.
[21]  20 Ganev P N, Dolan J F, Frankel K L, et al.2010. Rates of extension along the Fish Lake Valley fault and transtensional deformation in the Eastern California shear zone-Walker Lane belt[J]. Lithosphere, 2(1): 33-49.
[22]  21 Glennie C L, Hinojosa-Corona A, Nissen E, et al.2014. Optimization of legacy LiDAR data sets for measuring near-field earthquake displacements[J]. Geophysical Research Letters, 41(10): 3494-3501.
[23]  22 Gloaguen R, Marpu P R, Niemeyer I.2007. Automatic extraction of faults and fractal analysis from remote sensing data[J]. Nonlinear Processes in Geophysics, 14(2): 131-138.
[24]  23 Grebby S, Cunningham D, Naden J, et al.2012. Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus[J]. International Journal of Earth Sciences, 101(6): 1645-1660.
[25]  24 Guarnieri P, Pirrotta C.2008. The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily)[J]. Geomorphology, 95(3): 260-273.
[26]  25 Haugerud R A, Harding D J, Johnson S Y, et al.2003. High-resolution lidar topography of the Puget Lowland, Washington[J]. GSA Today, 13(6): 4-10.
[27]  26 Hayakawa Y S, Oguchi T.2006. DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers[J]. Geomorphology, 78: 90-106.
[28]  27 Hilley G E, DeLong S, Prentice C, et al.2010. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data[J]. Geophysical Research Letters, 37(4): L04301.
[29]  28 Hooper D M, Bursik M I, Webb F H.2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA[J]. Remote Sensing of Environment, 84(2): 255-267.
[30]  29 Hunter L E, Howle J F, Rose R S, et al.2011. LiDAR-assisted identification of an active fault near Truckee, California[J]. Bulletin of the Seismological Society of America, 101(3): 1162-1181.
[31]  30 Jackson J, Norris R, Youngson J.1996. The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns[J]. Journal of Structural Geology, 18(2): 217-234.
[32]  31 Johnson K, Nissen E, Saripalli S, et al.2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986.
[33]  32 Jordan G, Meijninger B M L, Van H D J J, et al.2005. Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece[J]. International Journal of Applied Earth Observation and Geoinformation, 7(3): 163-182.
[34]  33 Jordan G.2003. Morphometric analysis and tectonic interpretation of digital terrain data: a case study[J]. Earth Surface Processes and Landforms, 28(8): 807-822.
[35]  34 Koike K, Nagano S, Michito O.1995. Lineament analysis of satellite images using a segment tracing algorithm (STA)[J]. Computers & Geosciences, 21(9): 1091-1104.
[36]  35 Kondo H, Toda S, Okumura K, et al.2008. A fault scarp in an urban area identified by LiDAR survey: a case study on the Itoigawa-Shizuoka Tectonic Line, central Japan[J]. Geomorphology, 101(4): 731-739.
[37]  36 Lin Z, Kaneda H, Mukoyama S, et al.2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182: 104-115.
[38]  37 Mallast U, Gloaguen R, Geyer S, et al.2011. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data[J]. Hydrology and Earth System Sciences, 15(8): 2665-2678.
[39]  38 Marghany M, Hashim M.2010. Lineament mapping using multispectral remote sensing satellite data[J]. Research Journal of Applied Sciences, 5(2): 126-130.
[40]  39 Masoud A A, Koike K.2011a. Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6): 818-832.
[41]  40 Masoud A A, Koike K.2011b. Morphotectonics inferred from the analysis of topographic lineaments auto-detected from DEMs: application and validation for the Sinai Peninsula, Egypt[J]. Tectonophysics, 510(3-4): 291-308.
[42]  41 Meigs A.2013. Active tectonics and the LiDAR revolution[J]. Lithosphere, 5(2): 226-229.
[43]  42 Nissen E, Maruyama T, Arrowsmith J R, et al.2014. Coseismic fault zone deformation revealed with differential LiDAR: examples from Japanese Mw~7 intraplate earthquakes[J]. Earth and Planetary Science Letters, 405: 244-256.
[44]  43 Novak I D, Soulakellis N.2000. Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece[J]. Geomorphology, 34(1): 101-109.
[45]  44 Nyborg M, Berglund J, Triumf C A.2007. Detection of lineaments using airborne laser scanning technology: laxemar-simpevarp, Sweden[J]. Hydrogeology Journal, 15(1): 29-32.
[46]  45 Oguchi T, Aoki T, Matsuta N.2003. Identification of an active fault in the Japanese Alps from DEM-based hill shading[J]. Computers and Geosciences, 29(7): 885-891.
[47]  46 Oskin M E, Arrowsmith J R, Corona A H, et al.2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335: 702-705.
[48]  47 Petit C, Gunnell Y, Gonga S N, et al.2009. Faceted spurs at normal fault scarps: insights from numerical modeling[J]. Journal of Geophysical Research, 114(B5): B05403.
[49]  48 Petit C, Meyer B, Gunnell Y, et al.2009. Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: evidence from the North Baikal Rift System, Siberia[J]. Tectonics, 28(6): TC6010.
[50]  49 Roering J J, Mackey B H, Marshall J A, et al.2013. 'You are here': connecting the dots with airborne LiDAR for geomorphic fieldwork[J]. Geomorphology, 200: 172-183.
[51]  50 Saadi N M, Watanabe K.2008. Lineaments extraction and analysis in Eljufra area, Libya[J]. Journal of Applied Remote Sensing, 2(1): 023538.
[52]  51 Saadi N M, Zaher M A, El-Baz F, et al.2011. Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya[J]. International Journal of Applied Earth Observation and Geoinformation, 13(5): 778-791.
[53]  52 Salisbury J B, Rockwell T K, Middleton T J, et al.2012. LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto Fault[J]. Bulletin of the Seismological Society of America, 102(2): 598-619.
[54]  53 Samy I E, Shattri M, Bujang B K H, et al.2012. Application of terrain analysis to the mapping and spatial pattern analysis of subsurface geological fractures of Kuala Lumpur limestone bedrock, Malaysia[J]. International Journal of Remote Sensing, 33(10): 3176-3196.
[55]  54 Sherrod B L, Brocher T M, Weaver C S, et al.2004. Holocene fault scarps near Tacoma, Washington, USA[J]. Geology, 32(1): 9-12.
[56]  55 ?těpan?íková P, Stemberk J, Vilímek V, et al.2008. Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic)[J]. Geomorphology, 102(1): 68-80.
[57]  56 Tarolli P.2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges[J]. Geomorphology, 216: 295-312.
[58]  57 Walker F, Allen M B.2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran[J]. Tectonophysics, 530: 251-263.
[59]  58 Wechsler N, Rockwell T K., Ben-Zion Y.2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault[J]. Geomorphology, 113(1): 82-96.
[60]  59 Wei Z Y, Bi L S, Xu Y R, et al.2015. Evaluating knickpoint recession along an active fault for paleoseismological analysis: The Huoshan Piedmont, Eastern China[J]. Geomorphology, 235: 63-76.
[61]  60 Wells D L, Coppersmith K J.1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002.
[62]  61 Wiatr T, Reicherter K, Papanikolaou I, et al.2013. Slip vector analysis with high resolution t-LiDAR scanning[J]. Tectonophysics, 608: 947-957.
[63]  62 Zachariasen J, Prentice C S.2008. Detailed mapping of the Northern San Andreas Fault using LiDAR imagery[J]. Final Technical Report of National Earthquake Hazards Reduction Program, 47: 05HQGR0069.
[64]  63 Zielke O, Arrowsmith J R, Ludwig L G, et al.2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327: 1119-1122.
[65]  64 Zielke O, Arrowsmith J R, Ludwig L G, et al.2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3): 1135-1154.
[66]  65 Zielke O, Arrowsmith J R.2012. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement[J]. Geosphere, 8(1): 206-221.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133