全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

简单、复杂与地理分布模型的选择

DOI: 10.11820/dlkxjz.2015.03.007, PP. 321-329

Keywords: 复杂系统,无尺度分布,特征尺度,标度,分形,异速,地理建模,空间分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

地理分布的数学建模是空间分析的基本途径之一,但空间维度建模素为科学研究的难题。由于数学新方法的发展和复杂性研究的兴起,地理空间建模的一些传统困难有望解决。本文通过两类地理分布的对比分析,论述地理建模的关键在于简单分布的特征尺度和复杂分布的标度。地理分布包括空间分布和规模分布,其本质均为概率分布和广义的数学空间分布,而概率分布可以分为简单分布和复杂分布。简单分布具有特征尺度,平均值有效,概率结构清楚;复杂分布没有特征尺度,平均值无效,概率结构不明确。对于简单分布,应该采用有尺度分布函数开展尺度分析;对于复杂分布,理当采用无尺度分布函数开展标度分析。分形几何学、异速生长理论和无尺度网络理论都是复杂系统分析的定量方法,这些方法的综合集成,可望为地理分布建模和地理系统的空间分析提供有效的数理工具。

References

[1]  1 艾南山, 陈嵘, 李后强. 1999. 走向分形地貌学[J]. 地理学与国土研究, 15(2): 92-96 [Ai N S, Chen R, Li H Q. 1999. Going towards fractal geomorphology[J]. Geography and Territorial Research, 15(2): 92-96.]
[2]  2 陈彦光. 2000. 城市人口空间分布函数的理论基础与修正形式: 利用最大熵方法推导关于城市人口密度衰减的Clark模型[J]. 华中师范大学学报: 自然科学版, 34(4): 489-492. [Chen Y G. 2000. Derivation and generalization of Clark's model on urban population density using entropy-maximising methods and fractal ideas[J]. Journal of Central China Normal University: Natural Science Edition, 34(4): 489-492.]
[3]  3 陈彦光. 2008 a. 地理学的模型建设及其选择标准: 简析非欧几何学对地理学研究方法的影响[J]. 亚热带资源与环境学报, 3(4): 1-7. [Chen Y G. 2008. On the building and selection criteria of models in geography: impacts of non-Euclidean geometry on geographic methodology[J]. Journal of Subtropical Resources and Environment, 3(4): 1-7.]
[4]  4 陈彦光. 2008 b. 分形城市系统: 标度、对称和空间复杂性[M]. 北京: 科学出版社. [Chen Y G. 2008. Fractal urban systems: scaling, symmetry, and spatial complexity[M]. Beijing, China: Science Press.]
[5]  5 陈彦光. 2009. 对称性与人文地理系统的规律性[J]. 地理科学进展, 28(2): 312-320. [Chen Y G. 2009. New way of looking at human geographical laws using the idea from symmetry[J]. Progress in Geography, 28(2): 312-320.]
[6]  6 陈彦光, 罗静. 2009. 地学计算的研究进展与问题分析[J]. 地理科学进展, 28(4): 481-488 [Chen Y G, Luo J. 2009. The origin, development, and future of geocomputation as a science[J]. Progress in Geography, 28(4): 481-488.]
[7]  19 Casti J L. 1996. Would-be worlds: how simulation is changing the frontiers of science. New York: John Wiley and Sons.
[8]  20 Chen Y G. 2008. A wave-spectrum analysis of urban population density: entropy, fractal, and spatial localization[J]. Discrete Dynamics in Nature and Society,http://dx.doi.org/10.1155/2008/728420.
[9]  21 Chen Y G. 2010 a. A new model of urban population density indicating latent fractal structure[J]. International Journal of Urban Sustainable Development, 1(1-2): 89-110.
[10]  22 Chen Y G. 2010 b. Exploring the fractal parameters of urban growth and form with wave-spectrum analysis[J]. Discrete Dynamics in Nature and Society,http://dx.doi.org/10.1155/2010/974917.
[11]  23 Chen Y G, Wang J J. 2013. Multifractal characterization of urban form and growth: the case of Beijing[J]. Environment and Planning B, 40(5): 884-904.
[12]  24 Chen Y G, Wang J J. 2014. Recursive subdivision of urban space and Zipf's law[J]. Physica A, 395: 392-404.
[13]  25 Chenery H B, Robinson S, Syquin M. 1986. Industrialization and growth: a comparative study[M]. New York: Oxford University Press.
[14]  26 Clark C. 1951. Urban population densities[J]. Journal of Royal Statistical Society, 114(4): 490-496.
[15]  27 Cressie N A. 1996. Change of support and the modifiable areal unit problem[J]. Geographical Systems, 3(2-3): 159-180.
[16]  28 Dacey M F. 1970. Some comments on population density models, tractable and otherwise[J]. Papers of the Regional Science Association, 27: 119-133.
[17]  29 Diebold F X. 2007. Elements of forecasting[M]. 4th ed. Mason, OH: Thomson/South-Western.
[18]  30 Einstein A. 1953. A letter to J.E. Switzer of San Mateo California[C]//Crombie A C. Scientific change. London, UK: Heinemann: 142.
[19]  31 Goldenfeld N, Kadanoff L P. 1999. Simple lessons from complexity[J]. Science, 284(2): 87-89.
[20]  32 Henry J. 2002. The scientific revolution and the origins of modern science[M]. 2nd ed. New York: Palgrave.
[21]  33 Jiang B. 2015. Head/tail breaks for visualization of city structure and dynamics[J]. Cities, 43: 69-77.
[22]  34 Kwan M P. 2012. The uncertain geographic context problem[J]. Annals of the Association of American Geographers, 102(5): 958-968.
[23]  35 Mandelbrot B B. 1983. The fractal geometry of nature[M]. New York: W. H. Freeman and Company.
[24]  36 Openshaw S. 1983. The modifiable areal unit problem[J]. Norwich, UK: Geo Books.
[25]  37 Parr J B, O'Neill G J. 1989. Aspects of lognormal function in the analysis of regional population distribution[J]. Environment and Planning A, 21: 961-973.
[26]  38 Philo C, Mitchell R, More A. 1998. Reconsidering quantitative geography: things that count[J]. Environment and Planning A, 30(2): 191-201.
[27]  39 Portugali J. 2006. Complex artificial environments: simulation, cognition and VR in the study and planning of cities[M]. Berlin, Germany: Springer-Verlag.
[28]  40 Sherratt G G. 1960. A model for general urban growth[C]//Churchman C W, Verhulst M. Management sciences, model and techniques: proceedings of the sixth international meeting of institute of management sciences (Vol. 2). Elmsford, NY: Pergamon Press: 147-159.
[29]  41 Takayasu H. 1990. Fractals in the physical sciences. Manchester, UK: Manchester University Press.
[30]  42 Unwin D J. 1996. GIS, spatial analysis and spatial statistics[J]. Progress in Human Geography, 20(4): 540-551.
[31]  43 Waldrop M. 1992. Complexity: the emerging of science at the edge of order and chaos[M]. New York: Simon and Schuster.
[32]  44 Wilson A G. 2000. Complex spatial systems: the modelling foundations of urban and regional analysis[M]. Singapore: Pearson Education.
[33]  45 Zipf G K. 1949. Human behavior and the principle of least effort[M]. Reading, MA: Addison-Wesley.
[34]  7 冯健. 2002. 杭州市人口密度空间分布及其演化的模型研究[J]. 地理研究, 21(5): 635-646 [Feng J. 2002. Modeling the spatial distribution of urban population density and its evolution in Hangzhou[J]. Geographical Research, 21(5): 635-646.]
[35]  8 郝柏林. 1986. 分形与分维[J]. 科学, 38(1): 9-17. [Hao B L. 1986. Fractals and fractal dimension[J]. Science(Kexue), 38(1): 9-17.]
[36]  9 郝柏林. 2004. 混沌与分形: 郝柏林科普文集[M]. 上海: 上海科学技术出版社. [Hao B L. 2004. Chaos and fractals[M]. Shanghai, China: Shanghai Science and Technology Press.]
[37]  10 梁进社. 2009. 地理学的十四大原理[J]. 地理科学, 29(3): 307-315. [Liang J S. 2009. Fourteen principles in geography[J]. Scientia Geographica Sinica, 29(3): 307-315.]
[38]  11 Allen P M. 1997. Cities and regions as self-organizing systems: models of complexity[J]. Amsterdam, NL: Gordon and Breach Science.
[39]  12 Bak P. 1996. How nature works: the science of self-organized criticality[M]. New York: Springer-Verlag.
[40]  13 Barabasi A-L, Bonabeau E. 2003. Scale-free networks[J]. Scientific American, 288(5): 50-59.
[41]  14 Batty M. 2005. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals[M]. Cambridge, MA/London, UK: the MIT Press.
[42]  15 Batty M. 2008. The size, scale, and shape of cities[J]. Science, 319: 769-771.
[43]  16 Batty M, Longley P A. 1994. Fractal cities: a geometry of form and function[M]. London, UK: Academic Press.
[44]  17 Buchanan M. 2000. Ubiquity: the science of history or why the world is simpler than we think[M]. London, UK: Weidenfeld & Nicolson.
[45]  18 Burton I. 1963. The quantitative revolution and theoretical geography. Canadian Geographer, 7: 151-162.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133