17 Sutter P W, Flege J I, Sutter E A.Epitaxial graphene on ruthenium.Nat Mater, 2008, 7:406-411
[18]
18 Reina A, Jia X, Ho J, et al.Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano Lett, 2008, 9:30-35
[19]
19 Chae S J, Güne? F, Kim K K, et al.Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:Wrinkle formation.Adv Mater, 2009, 21:2328-2333
[20]
20 Wang X B, You H J, Liu F M, et al.Large-scale synthesis of few-layered graphene using CVD.Chem Vap Depos, 2009, 15:53-56
[21]
21 Kim K S, Zhao Y, Jang H, et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature, 2009, 457:706-710
[22]
35 Kosynkin D V, Higginbotham A L, Sinitskii A, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature, 2009, 458:872-876
[23]
36 Zhang W X, Cui J C, Tao C A, et al.A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach.Angew Chem Int Ed, 2009, 48:5864-5868
[24]
37 Kim C D, Min B K, Jung W S.Preparation of graphene sheets by the reduction of carbon monoxide.Carbon, 2009, 47:1610-1612
[25]
38 Meyer J C, Geim A K, Katsnelson M I, et al.The structure of suspended graphene sheets.Nature, 2007, 446:60-63
[26]
39 Becerril H A, Mao J, Liu Z, et al.Evaluation of solution-processed reduced graphene oxide films as transparent conductors.ACS Nano, 2008, 2:463-470
[27]
40 Shin H J, Kim K K, Benayad A, et al.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance.Adv Func Mater, 2009, 19:1987-1992
[28]
41 Cassagneau T, Fendler J H.Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets.J Phys Chem B, 1999, 103:1789-1793
[29]
42 Stankovich S, Piner R D, Chen X, et al.Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate).J Mater Chem, 2006, 16:155-158
[30]
43 Stankovich S, Dikin D A, Piner R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon, 2007, 45:1558-1565
[31]
44 Fan X B, Peng W X, Li Y, et al.Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation.Adv Mater, 2008, 20:4490-4493
[32]
45 Li D, Müller M B, Gilje S, et al.Processable aqueous dispersions of graphene nanosheets.Nat Nanotechnol, 2008, 3:101-105
[33]
46 Zhu Y, Stoller M D, Cai W, et al.Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets.ACS Nano, 2010, 4:1227-1233
[34]
47 Chen W F, Yan L F.Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure.Nanoscale, 2010, 2:559-563
[35]
48 Dreyer D R, Murali S, Zhu Y, et al.Reduction of graphite oxide using alcohols.J Mater Chem, 2011, 21:3443-3447
[36]
49 Wei A, Wang J X, Long Q, et al.Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide.Mater Res Bull, 2011, 46:2131-2134
[37]
50 Zhang H B, Wang J W, Yan Q, et al.Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide.J Mater Chem, 2011, 21:5392-5397
[38]
51 McAllister M J, Li J L, Adamson D H, et al.Single sheet functionalized graphene by oxidation and thermal expansion of graphite.Chem Mater, 2007, 19:4396-4404
[39]
52 Chen W, Yan L, Bangal P R.Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves.Carbon, 2010, 48:1146-1152
[40]
53 Schniepp H C, Li J L, McAllister M J, et al.Functionalized single graphene sheets derived from splitting graphite oxide.J Phys Chem B, 2006, 110:8535-8539
[41]
54 Wang Z L, Xu D, Huang Y, et al.Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries.Chem Commun, 2012, 48:976-978
[42]
55 Wang Z J, Zhou X Z, Zhang J, et al.Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase.J Phys Chem C, 2009, 113:14071-14075
[43]
56 Zhou X Z, Huang X, Qi X Y, et al.In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces.J Phys Chem C, 2009, 113:10842-10846
[44]
57 Donner S, Li H W, Yeung E S, et al.Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: Approach to single-molecule spectroelectrochemistry.Anal Chem, 2006, 78:2816-2822
[45]
58 Qi X Y, Pu K Y, Zhou X Z, et al.Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents.Small, 2010, 6:663-669
[46]
59 Williams G, Seger B, Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide.ACS Nano, 2008, 2:1487-1491
[47]
60 Gao J, Liu F, Liu Y L, et al.Environment-friendly method to produce graphene that employs vitamin c and amino acid.Chem Mater, 2010, 22:2213-2218
[48]
61 Hernandez Y, Nicolosi V, Lotya M, et al.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat Nanotechnol, 2008, 3:563-568
[49]
62 Khan U, Porwal H, O’Neill A, et al.Solvent-exfoliated graphene at extremely high concentration.Langmuir, 2011, 27:9077-9082
[50]
63 Lotya M, Hernandez Y, King P J, et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.J Am Chem Soc, 2009, 131:3611-3620
[51]
64 O’Neill A, Khan U, Nirmalraj P N, et al.Graphene dispersion and exfoliation in low boiling point solvents.J Phys Chem C, 2011, 115:5422-5428
[52]
65 Hernandez Y, Lotya M, Rickard D, et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery.Langmuir, 2010, 26:3208-3213
[53]
66 Khan U, O’Neill A, Lotya M, et al.High-concentration solvent exfoliation of graphene.Small, 2010, 6:864-871
[54]
67 Khan U, O’Neill A, Porwal H, et al.Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation.Carbon, 2012, 50:470-475
[55]
68 Keeley G P, O’Neill A, Holzinger M, et al.DMF-exfoliated graphene for electrochemical nadh detection.Phys Chem Chem Phys, 2011, 13:7747-7750
[56]
69 Hamilton C E, Lomeda J R, Sun Z, et al.High-yield organic dispersions of unfunctionalized graphene.Nano Lett, 2009, 9:3460-3462
[57]
70 Coleman J N.Liquid-phase exfoliation of nanotubes and graphene.Adv Func Mater, 2009, 19:3680-3695
[58]
71 Hummers W S, Offeman R E.Preparation of graphitic oxide.J Am Chem Soc, 1958, 80:1339-1339
[59]
72 Brodie B C.On the atomic weight of graphite.Philos Trans R Soc london, 1859, 149:249-259
[60]
73 Staudenmaier L.Verfahren zur darstellung der graphitsaure.Ber Deut Chem Ges, 1898, 31:1481-1499
[61]
74 Dhakate S R, Chauhan N, Sharma S, et al.An approach to produce single and double layer graphene from re-exfoliation of expanded graphite.Carbon, 2011, 49:1946-1954
[62]
75 An X, Simmons T, Shah R, et al.Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications.Nano Lett, 2010, 10:4295-4301
[63]
76 Veca L M, Lu F, Meziani M J, et al.Polymer functionalization and solubilization of carbon nanosheets.Chem Commun, 2009, 10:2565-2567
[64]
77 Xu Y X, Bai H, Lu G W, et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.J Am Chem Soc, 2008, 130:5856-5857
[65]
78 Hao R, Qian W, Zhang L H, et al.Aqueous dispersions of TCNQ-anion-stabilized graphene sheets.Chem Commun, 2008, 48:6576-6578
[66]
79 Li X L, Wang X R, Zhang L, et al.Chemically derived, ultrasmooth graphene nanoribbon semiconductors.Science, 2008, 319:1229-1232
[67]
80 Li X L, Zhang G Y, Bai X D, et al.Highly conducting graphene sheets and langmuir-blodgett films.Nat Nanotechnol, 2008, 3:538-542
[68]
81 Qi X, Pu K Y, Li H, et al.Amphiphilic graphene composites.Angew Chem Int Ed, 2010, 49:9426-9429
[69]
82 Eckert C A, Knutson B L, Debenedetti P G.Supercritical fluids as solvents for chemical and materials processing.Nature, 1996, 383:313-318
[70]
83 Chaudhary A, Beckman E J, Russell A J.Rational control of polymer molecular weight and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids.J Am Chem Soc, 1995, 117:3728-3733
[71]
84 Serhatkulu G K, Dilek C, Gulari E.Supercritical CO2 intercalation of layered silicates.J Supercrit Fluid, 2006, 39:264-270
[72]
85 Johnston K P, Shah P S.Making nanoscale materials with supercritical fluids.Science, 2004, 303:482-483
[73]
86 Pu N W, Wang C A, Sung Y, et al.Production of few-layer graphene by supercritical CO2 exfoliation of graphite.Mater Lett, 2009, 63:1987-1989
[74]
87 Horsch S, Serhatkulu G, Gulari E, et al.Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites.Polymer, 2006, 47:7485-7496
[75]
88 Li J, Xu Q, Peng Q, et al.Supercritical CO2-assisted synthesis of polystyrene/clay nanocomposites via in situ intercalative polymerization.J Appl Poly Sci, 2006, 100:671-676
[76]
89 Zheng X L, Xu Q, Li J B, et al.High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers.RSC Adv, 2012, 2:10632-10638
[77]
90 Rangappa D, Sone K, Wang M, et al.Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation.Chem Eur J, 2010:16:6488-6494
[78]
91 Liu C, Hu G, Gao H.Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide.J Supercrit Fluid, 2012, 63:99-104
[79]
92 Jang J H, Rangappa D, Kwon Y U, et al.Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties.J Mater Chem, 2011, 21:3462-3466
[80]
93 Li L H, Zheng X L, Wang J J, et al.Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide.ACS Sust Chem Eng, 2013, 1:144-151
[81]
94 Li L H, Zhang J N, Liu Y Q, et al.Facile fabrication of Pt nanoparticles on 1-pyrenamine functionalized graphene nanosheets for methanol electrooxidation.ACS Sust Chem Eng, 2013, 1:527-533
[82]
95 Petrov P, Stassin F, Pagnoulle C, et al.Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers.Chem Commun, 2003, (23):2904-2905
[83]
96 Etika K C, Jochum F D, Theato P, et al.Temperature controlled dispersion of carbon nanotubes in water with pyrene-functionalized poly(N-cyclopropylacrylamide).J Am Chem Soc, 2009, 131:13598-13599
[84]
97 Liu J, Bibari O, Mailley P, et al.Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene-polyethylene glycol through π-π stacking.New J Chem, 2009, 33:1017-1024
[85]
98 Yan Y, Cui J, P?tschke P, et al.Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites.Carbon, 2010, 48:2603-2612
[86]
99 Knights S D, Colbow K M, St-Pierre J, et al.Aging mechanisms and lifetime of PEFC and DMFC.J Power Sources, 2004, 127:127-134
[87]
100 Kundu P, Nethravathi C, Deshpande P A, et al.Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene:Synergistic co-reduction mechanism and high catalytic activity.Chem Mater, 2011, 23:2772-2780
[88]
101 Wang S, Wang X, Jiang S P.PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation.Langmuir, 2008, 24:10505-10512
[89]
102 Zhang W, Chen J, Swiegers G F, et al.Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.Nanoscale, 2010, 2:282-286
[90]
103 Sharma S, Ganguly A, Papakonstantinou P, et al.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J Phys Chem C, 2010, 114:19459-19466
[91]
104 Huang H J, Chen H Q, Sun D P, et al.Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells.J Power Sources, 2012, 204:46-52
[92]
105 Khosravi M, Amini M K.Flame synthesis of carbon nanofibers on carbon paper:Physicochemical characterization and application as catalyst support for methanol oxidation.Carbon, 2010, 48:3131-3138
[93]
106 Xin Y C, Liu J G, Jie X, et al.Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts.Electro Acta, 2012, 60:354-358
[94]
22 Li X S, Cai W W, An J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils.Science, 2009, 324:1312-1314
[95]
23 Gao L B, Ren W C, Xu H L, et al.Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.Nat Commun, 2012, 3:699
[96]
24 Rollings E, Gweon G H, Zhou S Y, et al.Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate.J Phys Chem Solids, 2006, 67:2172-2177
[97]
25 Mathieu C, Barrett N, Rault J, et al.Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC{0001}.Phys Rev B, 2011, 83:235436
[98]
26 Van Wesep R G, Chen H, Zhu W, et al.Communication:Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111).J Chem Phys, 2011, 134:171105
[99]
27 Berger C, Song Z, Li X, et al.Electronic confinement and coherence in patterned epitaxial graphene.Science, 2006, 312:1191-1196
[100]
28 Emtsev K V, Speck F, Seyller T, et al.Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces:A comparative photoelectron spectroscopy study.Phys Rev B, 2008, 77:155303
[101]
29 Yang X, Dou X, Rouhanipour A, et al.Two-dimensional graphene nanoribbons.J Am Chem Soc, 2008, 130:4216-4217
[102]
30 Carissan Y, Klopper W.Growing graphene sheets from reactions with methyl radicals:A quantum chemical study.Chem Phys Chem, 2006, 7:1770-1778
[103]
31 Qian H, Negri F, Wang C, et al.Fully conjugated tri(perylene bisimides):An approach to the construction of n-type graphene nanoribbons.J Am Chem Soc, 2008, 130:17970-17976
[104]
32 Wang Z Y, Li N, Shi Z S, et al.Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air.Nanotechnology, 2010, 21:175602
[105]
33 Li N, Wang Z Y, Zhao K K, et al.Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method.Carbon, 2010, 48:255-259
[106]
34 Hirsch A.Unzipping carbon nanotubes:A peeling method for the formation of graphene nanoribbons.Angew Chem Int Ed, 2009, 48:6594-6596