1 Han B X.Supercritical Fluid Science and Technology(in Chinese).Beijing:China Petrochemical Press Co.Ltd., 2005 [韩布兴.超临界流体科学与技术.北京:中国石化出版社,
[2]
2 Li S M, Xu Q, Chen J F, et al.Study and characterization of Al-MCM-41 prepared with the assistance of supercritical CO2.Ind Eng Chem Res, 2008, 47:8211-8217
[3]
3 Sun D, Liu Z, He J, et al.Surface sol-gel modification of mesoporous silica molecular sieve SBA-15 with TiO2 in supercritical CO2.Micropor Mesopor Mater, 2005, 80:165-171
[4]
4 Feng J, An G M, Chen B H, et al.Post-synthesis of Ti-SBA-15 in supercritical CO2-ethanol solution.Clean-Soil Air Water, 2009, 37:527-533
[5]
5 Wang K, Lin Y, Morris M, et al.Preparation of MCM-48 materials with enhanced hydrothermal stability.J Mater Chem, 2006, 16:4051-4057
[6]
6 Huang Z, Xu L, Li J H, et al.Organic template removal from hexagonal mesoporous silica by means of methanol-enhanced CO2 extraction:Effect of temperature, pressure and flow rate.Sep Purif Technol, 2011, 77:112-119
[7]
7 Huang Z, Huang L, Shen S, et al.High quality mesoporous materials prepared by supercritical fluid extraction:Effect of curing treatment on their structural stability.Microporous Mesoporous Mater, 2005, 80:157-163
[8]
8 Chatterjee M, Hayashi H, Saito N.Role and effect of supercritical fluid extraction of template on the Ti(IV) active sites of Ti-MCM-41.Microporous Mesoporous Mater, 2003, 57:143-155
[9]
9 Huang Z, Luan D, Shen S, et al.Supercritical fluid extraction of the organic template from synthesized porous materials:Effect of pore size.J Supercrit Fluid, 2005, 35:40-48
[10]
10 Pai R A, Humayun R, Schulberg M T, et al.Mesoporous silicates prepared using preorganized templates in supercritical fluids.Science, 2004, 303:507-510
[11]
11 Zhu G W.Synthesis and properties research of molecular sieves with aid of 2(in Chinese).Doctor Dissertation.Changchun:Jilin University, 2014 [朱国巍.CO2辅助合成分子筛及其性质研究.博士学位论文.长春:吉林大学,
[12]
12 Lou Z S, Chen Q W, Wang W, et al.Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium.Carbon, 2003, 41:3063-3067
[13]
13 Lou Z S.Synthesis of carbon nanomaterials by reduction of carbon dioxide(in Chinese).Doctor Dissertation.Hefei:University of Science and Technology of China, 2005 [娄正松.化学还原二氧化碳合成碳基纳米材料.博士学位论文.合肥:中国科学技术大学,
[14]
14 Vohs J K, Brege J J, Raymond J E, et al.Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride.J Am Chem Soc, 2004, 126:9936-9937
[15]
15 Ye X, Lin Y, Wang C, et al.Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes.Adv Mater, 2003, 15:316-319
[16]
16 Lin Y, Cui X, Yen C, et al.PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid:A novel electrocatalyst for direct methanol fuel cells.Langmuir, 2005, 21:11474-11479
[17]
17 Sun Z Y, Zhang X R, Han B X, et al.Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution.Carbon, 2007, 45:2589-2596
[18]
18 Sun Z Y, Liu Z, Han B X, et al.Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes.Mater Lett, 2007, 61:4565-4568
[19]
19 Lock E H, Merchan-Merchan W, D'Arcy J, et al.Coating of inner and outer carbon nanotube surfaces with polymers in supercritical CO2.J Phys Chem C, 2007, 111:13655-13658
[20]
20 Park C, Kim J W, Sauti G, et al.Metallized nanotube polymer composites via supercritical fluid impregnation.J Polym Sci Pol Phys, 2012, 50:394-402
[21]
21 Seleznev V, Yamaguchi H, Hirayama Y, et al.Single-turn GaAs/InAs nanotubes fabricated using the supercritical CO2 drying technique.Jpn J Appl Phys, 2003, 42:L791-L794
[22]
22 Liu P T, Tsai C T, Chang T C, et al.Activation of carbon nanotube emitters by using supercritical carbon dioxide fluids with propyl alcohol.Electrochem Solid State Lett, 2006, 9:124-126
[23]
23 Wang J S, Wai C M, Shimizu K, et al.Purification of single-walled carbon nanotubes using a supercritical fluid extraction method.J Phys Chem C, 2007, 111:13007-13012
[24]
24 Jung J, Perrut M.Particle design using supercritical fluids:Literature and patent survey.J Supercrit Fluid, 2001, 20:179-219
[25]
25 Jiao C Q, Li H X, Liu B B.Present and prospect of supercritical fluid for preparing metal matrix nanoparticles(in Chinese).Mater Rev, 2011, 13:119-123 [教传琦, 李宏煦, 刘彬彬.超临界流体制备金属基纳米微粒的现状与展望.材料导报, 2011, 13:119-
[26]
26 Zhang C, Zhang J, Zhang X, et al.Preparation of silica and titanium-containing silica hollow spheres at supercritical CO2/H2O interface.J Supercrit Fluid, 2007, 42:142-149
[27]
27 Reverchon E, Della Porta G, Sannino D, et al.Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor.Powder Technol, 1999, 102:127-134
[28]
28 Zhang J Y.SAS preparation and characterization of nano-crystalline Ce-Zr-O catalyst(in Chinese).Master Dissertation.Tianjin:Tianjin University, 2008 [张金彦.纳米晶铈锆复合氧化物催化剂的SAS法制备与表征.硕士学位论文.天津:天津大学,
[29]
29 Jiang H, Huang P, Liu L, et al.Controllable synthesis of Ce1-xZrxO2 hollow nanospheres via supercritical anti-solvent precipitation.Mater Charact, 2012, 63:98-104
[30]
30 Jiang D, Zhang M, Jiang H.Preparation and formation mechanism of nano-sized MnOx-CeO2 hollow spheres via supercritical anti-solvent technique.Mater Lett, 2011, 65:1222-1225
[31]
31 Jiang D Y, Zhang M H, Li G X, et al.Preparation and evaluation of MnOx-CeO2 nanospheres via a green rout.Catal Commun, 2012, 17:59-63
[32]
32 Zhang M, Jiang D, Jiang H.Enhanced oxygen storage capacity of Ce0.88Mn0.12Oy compared to CeO2:An experimental and theoretical investigation.Mater Res Bull, 2012, 47:4006-4012
[33]
33 Jiang H X, Zhao J, Jiang D Y, et al.Hollow MnOx-CeO2 nanospheres prepared by a green route:A novel low-temperature NH3-SCR catalyst.Catal Lett, 2014, 144:325-332
[34]
34 Wang H Q, Jiang H X, Kuang L, et al.Synthesis of highly dispersed MnOx-CeO2 nanospheres by surfactant-assisted supercritical anti-solvent(SAS) technique:The important role of the surfactant.J Supercrit Fluid, 2014, 92:84-92
[35]
35 Kuang L, Huang P, Sun H, et al.Preparation and characteristics of nano-crystalline Cu-Ce-Zr-O composite oxides via a green route:Supercritical anti-solvent process.J Rare Earth, 2013, 31:137-144
[36]
36 Huang P, Jiang H X, Zhang M H.Structures and oxygen storage capacities of CeO2-ZrO2-Al2O3 ternary oxides prepared by a green route:Supercritical anti-solvent precipitation.J Rare Earth, 2012, 30:524-528
[37]
37 Duren T, Milliange F, Ferey G, et al.Calculating geometric surface areas as a characterization tool for metal-organic frameworks.Phys Chem, 2007, 111:15350-15356
[38]
38 Nelson A P, Farha O K, Mulfort K L, et al.Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.J Am Chem Soc, 2008, 131:458-460
[39]
39 Mondloch J E, Karagiaridi O, Farha O K, et al.Activation of metal-organic framework materials.CrystEngComm, 2013, 15:9258-9264
[40]
40 Xiang Z H, Cao D P, Shao X H, et al.Facile preparation of high-capacity hydrogen storage metal-organic frameworks:A combination of microwave-assisted solvothermal synthesis and supercritical activation.Chem Eng Sci, 2010, 65:3140-3146
[41]
41 Hu Z.The synthesis and performance of metal-organic framesorks and CNT@MOF composite(in Chinese).Master Dissertation.Beijing:Beijing University of Chemical Technology, 2011 [胡赞.金属-有机骨架化合物及其碳纳米管杂化材料的合成与性能研究.硕士学位论文.北京:北京化工大学,
[42]
42 Koh K, Van Oosterhout J D, Roy S, et al.Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths.Chem Sci, 2012, 3:2429-2432
[43]
43 Zhao Y J, Zhang J L, Han B X, et al.Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system.Angew Chem Int Ed, 2011, 50:636-639
[44]
44 Lopez-Periago A, Vallcorba O, Frontera C, et al.Exploring a novel preparation method of 1D metal organic frameworks based on supercritical CO2.Dalton Trans, 2015, 44:7548-7553
[45]
45 Zhao Y J, Zhang J L, Song J L, et al.Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution:Highly efficient catalyst.Green Chem, 2011, 13:2078-2082
[46]
46 Wu T, Zhang P, Jun M, et al.Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid.Chin J Catal, 2013, 34:167-175
[47]
47 Belyaeva E V, Isaeva V I, Said-Galiev E E, et al.New method for catalyst preparation based on metal-organic framework MOF-5 for the partial hydrogenation of phenylacetylene.Russ Chem Bull, 2014, 63:396-403
[48]
48 Martini J E.The production and analysis of microcellular foam.Master Dissertation.Boston:Massachusetts Institute of Technology, 1981
[49]
49 Cooper A I, Hems W P, Holmes A B.Synthesis of cross-linked polymer microspheres in supercritical carbon dioxide.Macromol Rapid Commun, 1998, 19:353-357
[50]
50 Gong J L, Li L.Nanoporous polymer synthesis using supercritical fluid selective swelling method(in Chinese).Polym Bull, 2011, 6:9-14 [龚剑亮, 李磊.超临界流体选择溶胀法制备聚合物纳米多孔材料.高分子通报, 2011, 6:9-
[51]
51 Kho Y W, Kalika D S, Knutson B L.Precipitation of nylon 6 membranes using compressed carbon dioxide.Polymer, 2001, 42:6119-6127
[52]
52 Rouholamin D, Smith P J, Ghassemieh E.Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming.J Mater Sci, 2013, 48:3254-3263
[53]
53 Niu S F, Yang W L.Preparation of porous poly(lactic acid) supports by supercritical anti-solvent technology(in Chinese).Petrochem Technol, 2015,(1):116-120 [牛首飞, 杨文玲.超临界抗溶剂法制备聚乳酸多孔载体.石油化工, 2015,(1):116-
[54]
54 Picchioni F.Supercritical carbon dioxide and polymers:An interplay of science and technology.Polym Int, 2014, 63:1394-1399
[55]
55 Boyere C, Leonard A F, Grignard B, et al.Synthesis of microsphere-loaded porous polymers by combining emulsion and dispersion polymerisations in supercritical carbon dioxide.Chem Commun, 2012, 48:8356-8358