20 Butler R N, Coyne A G.Water:Nature's reaction enforcer-comparative effects for organic synthesis “in-water” and “on-water”.Chem Rev, 2010, 110:6302-6337
[2]
21 Chanda A, Fokin V V.Organic synthesis “on water”.Chem Rev, 2009, 109:725-748
[3]
22 Breslow R, Rideout D C.Hydrophobic acceleration of Diels-Alder reactions.J Am Chem Soc, 1980, 102:7816-7817
[4]
23 Sharpless K B, Narayan S, Muldoon J, et al.“On water”:Unique reactivity of organic compounds in aqueous suspension.Angew Chem Int Ed, 2005, 44:3275-3279
[5]
24 Qu J, Zuo Y J.How does aqueous solubility of organic reactant affect a water-promoted reaction? J Org Chem, 2014, 79:6832-6839
[6]
25 Nicolaou K C, Xu H, Wartmann M.Biomimetic total synthesis of gambogin and rate acceleration of pericyclic reactions in aqueous media.Angew Chem Int Ed, 2005, 44:756-761
[7]
26 McErlean C S P, Beare K D.Revitalizing the aromatic aza-Claisen rearrangement:Implications for the mechanism of “on-water” catalysis.Org Biomol Chem, 2013, 11:2452-2459
[8]
27 Cozzi P G, Zoli L.Nucleophilic substitution of ferrocenyl alcohols “on water”.Green Chem, 2007, 9:1292-1295
[9]
28 Cozzi P G, Zoli L.A rational approach towards the nucleophilic substitutions of alcohols “on water”.Angew Chem Int Ed, 2008, 47:4162-4166
[10]
29 Qu J, Zhang F Z, Tian Y, et al.Intramolecular etherification and polyene cyclization of p-activated alcohols promoted by hot water.J Org Chem, 2015, 80:1107-1115
[11]
30 Sreedhar B, Reddy P S, Reddy M A.Catalyst-free and base-free water-promoted SNAr reaction of heteroaryl halides with thiols.Synthesis, 2009, 10:1732-1738
[12]
31 Tandon V K, Maurya H K.“On water”:Unprecedented nucleophilic substitution and addition reactions with 1,4-quinones in aqueous suspension.Tetrahedron Lett, 2009, 50:5896-5902
[13]
32 Qu J, Li P F, Wang H L.1,n-Rearrangement of allylic alcohols promoted by hot water:Application to the synthesis of navenone B, a polyene natural product.J Org Chem, 2014, 79:3955-3962
[14]
33 Khatik G L, Kumar R, Chakraborti A K.Catalyst-free conjugated addition of thiols to α,β-unsaturated carbonyl compounds in water.Org Lett, 2006, 8:2433-2436
[15]
34 De Rosa M, Soriente A.Rapid and general protocol towards catalyst-free Friedel-Crafts C-alkylation of indoles in water assisted by microwave irradiation.Eur J Org Chem, 2010, 1029-1032
[16]
35 Qu J, Li G X.Friedel-Crafts alkylation of arenes with epoxides promoted by fluorinated alcohols or water.Chem Commun, 2010, 46:2653-2655
[17]
36 Bigi F, Carloni S, Ferrari L, et al.Clean synthesis in water.Part 2:Uncatalysed condensation reaction of Meldrum's acid and aldehydes.Tetrahedron Lett, 2001, 42:5203-5205
[18]
37 Yadav L D S, Singh S, Rai V K.Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O:Synthesis of 3-mercaptocoumarins.Green Chem, 2009, 11:878-882
[19]
38 Wang L M, Yu J J, Liu J Q, et al.Synthesis of tetraketones in water and under catalyst-free conditions.Green Chem, 2010, 12:216-219
[20]
39 Das S, Thakur A J.A clean, highly efficient and one-pot green synthesis of aryl/alkyl/heteroaryl-substituted bis(6-amino-1, 3-dimethyluracil-5-yl)methanes in water.Eur J Org Chem, 2011,(12):2301-2308
[21]
40 De Rosa M, Soriente A.Water opportunities:Catalyst and solvent in Mukaiyama aldol addition of Rawal's diene to carbonyl derivatives.Tetrahedron, 2011, 67:5949-5955
[22]
41 Dash J, Paladhi S, Bhati M, et al.Thiazolidinedione-isatin conjugates via an uncatalyzed diastereoselective aldol reaction on water.J Org Chem, 2014, 79:1473-1480
[23]
42 Chankeshwara S V, Chakraborti A K.Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water.Org Lett, 2006, 8:3259-3262
[24]
43 Gawande M B, Branco P S.An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media.Green Chem, 2011, 13:3355-3359
[25]
44 Procopio A, Gaspari M, Nardi M, et al.Simple and efficient MW-assisted cleavage of acetals and ketals in pure water.Tetrahedron Lett, 2007, 48:8623-8627
[26]
45 Jia X, Wang G, Li C, et al.Catalyst-free water-mediated N-Boc deprotection.Tetrahedron Lett, 2009, 50:1438-1440
[27]
46 Azizi N, Saidi M R.Highly chemoselective addition of amines to epoxides in water.Org Lett, 2005, 7:3649-3651
[28]
47 Qu J, Wang Z, Cui Y T, et al.Hot water-promoted ring-opening of epoxides and aziridines by water and other nucleophiles.J Org Chem, 2008, 73:2270-2274
[29]
48 Nair V A, Chouhan M, Senwar K R, et al.Regiospecific epoxide opening:A facile approach for the synthesis of 3-hydroxy-3-aminome-thylindolin-2-one derivatives.Green Chem, 2011, 13:2553-2560
[30]
49 Vilotijevic I, Jamison T F.Epoxide-opening cascades promoted by water.Science, 2007, 317:1189-1192
[31]
50 Robinson R.A synthesis of fropinone.J Chem Soc, 1917, 111:762-768
[32]
51 Birch A.Investigating a scientific legend:The tropinone synthesis.J Notes Rec R Soc Lond, 1993, 47:277-296
[33]
52 Pirrung M C, Das Sarma K.Multicomponent reactions are accelerated in water.J Am Chem Soc, 2004, 126:444-445
[34]
53 Jér?me F, Gu Y, De Sousa R, et al.Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives.Green Chem, 2009, 11:1968-1972
[35]
54 Kumaravel K, Vasuki G.Four-component catalyst-free reaction in water:Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives.Green Chem, 2009, 11:1945-1947
[36]
55 Mukhopadhyay C, Das P, Butcher R J.An expeditious and efficient synthesis of highly functionalized [1,-naphthyridines under catalyst-free conditions in aqueous medium.Org Lett, 2011, 13:4664-4667
[37]
56 Santra S, Andreana P R.A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades.Org Lett, 2007, 9:5035-5038
[38]
57 Santra S, Andreana P R.A bioinspired Ugi/Michael/aza-Michael cascade reaction in aqueous media:Natural-product-like molecular diversity.Angew Chem Int Ed, 2011, 50:9418-9422
[39]
58 Santra S, Andreana P R.A rapid, one-pot, microwave-influenced synthesis of spiro-2,5-diketopiperazines via a cascade Ugi/6-exo-trig aza-Michael reaction.J Org Chem, 2011, 76:2261-2264
[40]
59 Alizadeh A, Rezvanian A, Zhu L G.Synthesis of heterocyclic [3.3. propellanes via a sequential four component reaction.J Org Chem, 2012, 77:4385-4390
[41]
60 Qu J, Cao J L, Shen S L, et al.A catalyst-free one-pot construction of skeletons of 5-methoxyseselin and alloxanthoxyletin in water.Org Lett, 2013, 15:3856-3859
[42]
61 Park K, Lee S.Additive-free decarboxylative coupling of cinnamic acid derivatives in water:Synthesis of allyl amines.Org Lett, 2015, 17:1300-1303
[43]
62 Akiya N, Savage P E.Roles of water for chemical reactions in high-temperature water.Chem Rev, 2002, 102:2725-2750
[44]
63 Eckert C A, Liotta C L, Hallett J P.Organic Reactions in Water.In:Lindstrom U M, ed.Oxford:Blackwell, 2007.256
[45]
64 Katritzky A R, Nichols D A, Siskin M, et al.Reactions in high-temperature aqueous media.Chem Rev, 2001, 101:837-892
[46]
65 Eckert C A, Chandler K, Deng F, et al.Alkylation reactions in near-critical water in the absence of acid catalysts.Ind Eng Chem Res, 1997, 36:5175-5179
[47]
66 Eckert C A, Lesutis H P, Gl?ser R, et al.Acid/base-catalyzed ester hydrolysis in near-critical water.Chem Commun, 1999,(20):2063-2064
[48]
67 Eckert C A, Patrick H R, Gl?ser R, et al.Near-critical water:A benign medium for catalytic reactions.Ind Eng Chem Res, 2001, 40:6063-6067
[49]
68 Kuhlmann B, Arnett E M, Siskin M.Classical organic reactions in pure superheated water.J Org Chem, 1994, 59:3098-3101
[50]
69 Akiya N, Savage P E.Kinetics and mechanism of cyclohexanol dehydration in high-temperature water.Ind Eng Chem Res, 2001, 40:1822-1831
[51]
70 Xu X, Antal M J, Anderson D G M.Mechanism and temperature-dependent kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water.Ind Eng Chem Res, 1997, 36:23-41
[52]
71 Xu X, De Almeida C, Antal M J.Kinetics and mechanism of isobutene formation from t-butanol in hot liquid water.AIChE J, 1994, 40:1524-1534
[53]
72 Eckert C A, Chamblee T S, Weikel R R, et al.Reversible in situ acid formation for β-pinene hydrolysis using CO2 expanded liquid and hot water.Green Chem, 2004, 6:382-386
[54]
73 Kremsner J M, Kappe C O.Microwave-assisted organic synthesis in near-critical water at 300℃—A proof-of-concept study.Eur J Org Chem, 2005,(17):3672-3679
[55]
74 Ma J, Han B X, Song J, et al.Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst.Green Chem, 2013, 15:1485-1489
[56]
75 Gruttadauria M, Giacalone F, Noto R.Water in stereoselective organocatalytic reactions.Adv Synth Catal, 2009, 351:33-57
[57]
76 Yu Z X, Xia Y, Liang Y, et al.An unexpected role of a trace amount of water in catalyzing proton transfer in phosphine-catalyzed(3+2) cycloaddition of allenoates and alkenes.J Am Chem Soc, 2007, 129:3470-3471
[58]
77 Zotova N, Armstrong A, Blackmond D G, et al.Clarification of the role of water in proline-mediated aldol reactions.J Am Chem Soc, 2007, 129:15100-15101
[59]
78 Bandura A, Lvov S N.The ionization constant of water over wide ranges of temperature and density.J Phys Chem Ref Data, 2006, 35:15-30
[60]
79 Jung Y, Marcus R A.On the theory of organic catalysis “on water”.J Am Chem Soc, 2007, 129:5492-5502
[61]
80 Thomas L L, Rives J T, Jorgensen W L.Quantum mechanical/molecular mechanical modeling finds Diels-Alder reactions are accelerated less on the surface of water than in water.J Am Chem Soc, 2010, 132:3097-3104
[62]
81 Beattie J K, McErlean C S P, Phippen C B W.The mechanism of on-water catalysis.Chem Eur J, 2010, 16:8972-8974
[63]
82 Butler R N, Coyne A G, Cunningham W J, et al.Water and organic synthesis:A focus on the in-water and on-water border.Reversal of the in-water Breslow hydrophobic enhancement of the normal endo-effect on crossing to on-water conditions for Huisgen cycloadditions with increasingly insoluble organic liquid and solid 2p-dipolarophiles.J Org Chem, 2013, 78:3276-3291
[64]
83 Butler R N, Coyne A G.Understanding “on-water” catalysis of organic reactions.Effects of H+ and Li+ ions in the aqueous phase and nonreacting competitor H-bond acceptors in the organic phase:On H2O versus on D2O for Huisgen cycloadditions.J Org Chem, 2015, 80:1809-1817
[65]
1 Kobayashi S.The new world of organic reactions in water.Pure Appl Chem, 2013, 85:1089-1101
[66]
2 Simon M O, Li C J.Green chemistry oriented organic synthesis in water.Chem Soc Rev, 2012,41:1415-1427
[67]
3 Fischmeister C, Doucet H.Greener solvents for ruthenium and palladium-catalyzed aromatic C-H bond functionalization.Green Chem, 2011, 13:741-753
[68]
4 Anastas P T, Eghbali N.Green chemistry:Principles and practice.Chem Soc Rev, 2010, 39:301-312
[69]
5 Horváth I T.Solvents from nature.Green Chem, 2008, 10:1024-1028
[70]
6 Horváth I T, Anastas P T.Innovations and green chemistry.Chem Rev, 2007, 107:2169-2173
[71]
7 Lindstrom U M.Organic Reactions in Water.Oxford:Blackwell, 2007
[72]
8 Li C J, Chen L.Organic chemistry in water.Chem Soc Rev, 2006, 35:68-82
[73]
9 Li C J.Organic reactions in aqueous media with a focus on carbon-carbon bond formations:A decade update.Chem Rev, 2005, 105:3095-3165
[74]
10 Lindstrom U M.Stereoselective organic reactions in water.Chem Rev, 2002, 102:2751-2772
[75]
11 Blackmode D G, Armstrong A, Commbe V, et al.Water in organocatalytic processes:Debunking the myths.Angew Chem Int Ed, 2007, 46:3798-3800
[76]
12 Jessop P G, Heldebrant D J, Li X, et al.Reversible nonpolar-to-polar solvent.Nature, 2005, 436:1102
[77]
13 Jessop P G, Phan L, Andreatta J R, et al.Switchable-polarity solvents prepared with a single liquid component.J Org Chem, 2008, 73:127-132
[78]
14 Jessop P G, Heldebrant D J, Koech P K, et al.Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2.Green Chem, 2010, 12:713-721
[79]
15 Kumacheva E, Lestari G, Abolhasani M, et al.Switchable water:Microfluidic investigation of liquid-liquid phase separation mediated by carbon dioxide.J Am Chem Soc, 2014, 136:11972-11979
[80]
16 Lipshutz B H, Ghorai S.Transitioning organic synthesis from organic solvents to water.What's your E factor? Green Chem, 2014, 16:3660-3679
[81]
17 Thakur P B, Meshram H M.“On water” highly atom economical and rapid synthesis of a novel class of 3-hydroxy-2-oxindole scaflolds under a catalyst-free and column chromatography-free protocol at room temperature.RSC Adv, 2014, 4:6019-6026
[82]
18 Brancoa P S, Gawande M B, Bonifácio V D B, et al.Benign by design:Catalyst-free in-water, on-water green chemical methodologies in organic synthesis.Chem Soc Rev, 2013, 42:5522-5551
[83]
19 McErlean C S P, Beare K D, Yuen A K L, et al.Ionic liquids are compatible with on-water catalysis.Chem Commun, 2013, 49:8347-8349