全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

高红移类星体的观测

DOI: 10.1360/N972015-00430, PP. 2387-2395

Keywords: 高红移,类星体,大质量黑洞,宇宙再电离,寄主星系

Full-Text   Cite this paper   Add to My Lib

Abstract:

在宇宙大爆炸后10亿年以内的高红移(红移大于6)类星体为我们研究早期宇宙提供了重要的探针,这也使得对高红移类星体的观测研究成为星系宇宙学前沿研究领域的一大热点.本文对高红移类星体观测研究的重要性及其宇宙学意义,利用光学和近红外波段的观测发现早期宇宙中光度最高和中心黑洞质量最大的高红移类星体,以及利用亚毫米、毫米和射电波段观测对高红移类星体寄主星系所开展的研究等进行了较全面地总结,并对这一领域未来的研究前景与挑战进行了展望.

References

[1]  1 Mortlock D J, Warren S J, Venemans B P, et al. A luminous quasar at a redshift of z=7.085. Nature, 2011, 474: 616-619
[2]  2 Antonucci R. Unified models for active galactic nuclei and quasars. Annu Rev Astron Astr, 1993, 31: 473-521
[3]  3 Jiang L, Fan X, Brandt W N, et al. Dust-free quasars in the early Universe, Nature, 2010, 464: 380-383
[4]  4 Steffen A T, Strateva I, Brandt W N, et al. The X-ray-to-optical properties of optically selected active galaxies over wide luminosity and redshift ranges. Astron J, 2006, 131: 2826-2842
[5]  5 Shemmer O, Brandt W N, Vignali C, et al. The X-ray spectral properties and variability of luminous high-redshift active galactic nuclei. Astrophys J, 2005, 630: 729-739
[6]  6 Shemmer O, Brandt W N, Schneider D P, et al. Chandra observations of the highest redshift quasars from the sloan digital sky survey. Astrophys J, 2006, 644: 86-99
[7]  7 Jiang L, Fan X, Vestergaard M, et al. Gemini near-infrared spectroscopy of luminous z~6 quasars: Chemical abundances, black hole masses, and Mg II absorption. Astron J, 2007, 134: 1150-1161
[8]  8 Kurk J D, Walter F, Fan X, et al. Black hole masses and enrichment of z~6 SDSS quasars. Astrophys J, 2007, 669: 32-44
[9]  9 De Rosa G, Decarli R, Walter F, et al. Evidence for non-evolving Fe II/Mg II ratios in rapidly accreting z~6 QSOs. Astrophys J, 2011, 739: 56-69
[10]  10 Wu X B, Wang F, Fan X, et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature, 2015, 518: 512-515
[11]  11 Walter F, Riechers D, Cox P, et al. A kiloparsec-scale hyper-starburst in a quasar host less than 1gigayear after the Big Bang. Nature, 2009, 457: 699-701
[12]  12 Wang R, Wagg J, Carilli C L, et al. Far-infrared and molecular CO emission from the host galaxies of faint quasars at z~6. Astron J, 2011, 142: 101-110
[13]  13 Wang R, Wagg J, Carilli C L, et al. Star formation and gas kinematics of quasar host galaxies at z~6: New insights from ALMA. Astrophys J, 2013, 773: 44-53
[14]  14 Ade P A R, Aghanim N, Arnaud M, et al. Planck 2015 results. XIII. Cosmological parameters. 2015, arXiv:1502.01589
[15]  15 Fan X, Carilli C L, Keating B. Observational constraints on cosmic reionization. Annu Rev Astron Astr, 2006, 44: 415-462
[16]  16 White R L, Becker R H, Fan X, et al. Probing the ionization state of the Universe at z>6. Astron J, 2003, 126: 1-14
[17]  17 Carilli C L, Wang R, Fan X, et al. Ionization near zones associated with quasars at z ~ 6. Astrophys J, 2010, 714: 834-839
[18]  18 McGreer I D, Mesinger A, Fan X. The first (nearly) model-independent constraint on the neutral hydrogen fraction at z~6. Mon Not R Astron Soc, 2011, 415: 3237-3246
[19]  19 York D G, Adelman J, Anderson J E, et al. The sloan digital sky survey: Technical summary. Astron J, 2000, 120: 1579-1587
[20]  20 Gunn J E, Siegmund W A, Mannery E J, et al. The 2.5 m telescope of the sloan digital sky survey. Astron J, 2006, 131: 2332-2359
[21]  21 Ahn C P, Alexandroff R, Allende Prieto C, et al. The ninth data release of the sloan digital sky survey: First spectroscopic data from the SDSS-III baryon oscillation spectroscopic survey. Astrophys J Suppl S, 2012, 203: 21-33
[22]  22 Fan X, Strauss M A, Schneider D P, et al. A Survey of z>5.7 quasars in the sloan digital sky survey. II. Discovery of three additional quasars at z>6. Astron J, 2003, 125: 1649-1659
[23]  23 Fan X, Hennawi J F, Richards G T, et al. A survey of z>5.7 quasars in the sloan digital sky survey. III. Discovery of five additional quasars. Astron J, 2004, 128: 515-522
[24]  24 Fan X, Strauss M A, Richards G T, et al. A survey of z>5.7 quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars, Astron J, 2006, 131: 1203-1209
[25]  25 Jiang L, Fan X, Annis J, et al. A survey of z~6 quasars in the sloan digital sky survey deep stripe. I. A flux-limited sample at zAB<21. Astron J, 2008, 135: 1057-1066
[26]  26 Jiang L, Fan X, Bian F, et al. A survey of z~6 quasars in the sloan digital sky survey deep stripe. II. Discovery of six quasars at zAB>21. Astron J, 2009, 138: 305-311
[27]  27 Jiang L, McGreer I D, Fan X, et al. Discovery of eight z~6 quasars in the sloan digital sky survey overlap regions, Astron J, 2015, 149: 188
[28]  28 Willott C J, Delfosse X, Forveille T, et al. First results from the Canada-France high-z quasar survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization. Astrophys J, 2005, 633: 630-637
[29]  29 Warren S J, Hambly N C, Dye S, et al. The United Kingdom Infrared Telescope Infrared Deep Sky Survey first data release. Mon Not R Astron Soc, 2007, 375: 213-226
[30]  30 Willott C J, Delorme P, Omont A, et al. Four quasars above redshift 6 discovered by the Canada-France High-z Quasar Survey. Astron J, 2007, 134: 2435-2450
[31]  31 Willott C J, Delorme P, Reyle C, et al. Six more quasars at redshift 6 discovered by the Canada-France High-z Quasar Survey. Astron J, 2009, 137: 3541-3547
[32]  32 Willott C J, Delorme P, Reyle C, et al. The Canada-France High-z Quasar Survey: Nine new quasars and the luminosity function at redshift 6. Astron J, 2010, 139: 906-918
[33]  33 Venemans B P, McMahon R G, Warren S J, et al. The discovery of the first luminous z~6 quasar in the UKIDSS large area survey. Mon Not R Astron Soc, 2007, 376: 76-80
[34]  34 Mortlock D J, Patel M, Warren S J, et al. Photometric constraints on white dwarfs and the identification of extreme objects. Mon Not R Astron Soc, 2009, 399: 699-714
[35]  35 Morganson E, De Rosa G, Decarli R, et al. The First High-redshift Quasar from Pan-STARRS. Astron J, 2012, 143: 142-149
[36]  36 Banados E, Venemans B P, Morganson E, et al. Discovery of eight z~6 quasars from Pan-STARRS1. Astron J, 2014, 148: 14-25
[37]  37 Venemans B P, Banados E, Decarli R, et al. The identification of z-dropouts in Pan-STARRS1: Three quasars at 6.5
[38]  38 Venemans B P, Findlay J R, Sutherland W J, et al. Discovery of three z>6.5 quasars in the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. Astrophys J, 2013, 779: 24-36
[39]  39 Wright E L, Eisenhardt P R M, Mainzer A K, et al. The Wide-field Infrared Survey Explorer (WISE): Mission description and initial on-orbit performance. Astrom J, 2010, 140: 1868-1881
[40]  40 Wu X B, Hao G, Jia Z, et al. SDSS quasars in the WISE preliminary data release and quasar candidate selection with optical/infrared colours. Astron J, 2012, 144: 49-59
[41]  41 Gunn J E, Peterson B A. On the density of neutral hydrogen in intergalactic space. Astrophys J, 1965, 142: 1633-1641
[42]  42 Volonteri M. The formation and evolution of massive black holes. Science, 2012, 337: 544-547
[43]  43 Alexander T, Natarajan P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science, 2014, 345: 1330-1333
[44]  44 Kormendy J, Ho L C. Coevolution (Or Not) of supermassive black holes and Hhost galaxies. Annu Rev Astron Astr, 2013, 51: 511-653
[45]  45 Priddey R S, Isaak K G, McMahon R G, et al. Quasars as probes of the submillimetre cosmos at z>5 - I. Preliminary SCUBA photometry. Mon Not R Astron Soc, 2003, 344: L74-L78
[46]  46 Robson I, Priddey R S, Isaak K G, et al. Submillimetre observations of z>6 quasars. Mon Not R Astron Soc, 2004, 351: L29-L33
[47]  47 Bertoldi F, Carilli C L, Cox P, et al. Dust emission from the most distant quasars. Astron Astrophys, 2003, 406: L55-L58
[48]  48 Petric A O, Carilli C L, Bertoldi F, et al. Sensitive observations at 1.4 and 250 GHz of z>5 QSOs. Astron J, 2003, 126: 15-23
[49]  49 Wang R, Carilli C L, Beelen A, et al. Millimeter and Radio observations of z~6 quasars. Astron J, 2007, 134: 617~627
[50]  50 Omont A, Willott C J, Beelen A, et al. The Canada-France High-z Quasar Survey: 1.2 mm observations. Astron Astrophys, 2013, 552: 43-47
[51]  51 Beelen A, Cox P, Benford D J, et al. 350 μm dust emission from high-redshift quasars. Astrophys J, 2006, 642: 694-701
[52]  52 Leipski C, Meisenheimer K, Walter F, et al. Complete infrared spectral energy distributions of millimeter detected quasars at z>5. Astrophys J, 2013, 772: L103-L117
[53]  53 Valiante R, Schneider R, Maiolino R, et al. Quasar feedback in the early Universe: the case of SDSS J1148+5251, Mon Not R Astron Soc, 2012, 427: L60-L64
[54]  54 Vallini L, Gallerani S, Ferrara A, et al. Far-infrared line emission from high-redshift galaxies. Mon Not R Astron Soc, 2013, 433: 1567-1572
[55]  55 Carilli C L, Walter F. Cool gas in high-redshift galaxies. Annu Rev Astron Astr, 2013, 51: 105-161
[56]  56 Walter F, Bertoldi F, Carilli C, et al. Molecular gas in the host galaxy of a quasar at redshift z=6.42. Nature, 2003, 424: 406-408
[57]  57 Carilli C L, Neri R, Wang R, et al. Detection of 1.6×1010 Msolar of molecular gas in the host galaxy of the z=5.77 SDSS quasar J0927+2001. Astrophys J, 2007, 666: L9-L12
[58]  58 Riechers D A, Walter F, Bertoldi F, et al. Imaging atomic and highly excited molecular gas in a z=6.42 quasar host galaxy: Copious fuel for an eddington-limited starburst at the end of cosmic reionization. Astrophys J, 2009, 703: 1338-1345
[59]  59 Wang R, Carilli C L, Neri R, et al. Molecular gas in z ~ 6 quasar host galaxies. Astrophys J, 2010, 714: 699-712
[60]  60 Wang R, Wagg J, Carilli C L, et al. CO (2-1) line emission in redshift 6 quasar host galaxies. Astrophys J, 2011, 739: L34-L39
[61]  61 Gallerani S, Ferrara A, Neri R, et al. First CO(17-16) emission line detected in a z>6 quasar. Mon Not R Astron Soc, 2014, 445: 2848-2853
[62]  62 Weiss A, Walter F, Scoville N Z. The spectral energy distribution of CO lines in M 82. Astron Astrophys, 2005, 438: 533-544
[63]  63 Maiolino R, Gallerani S, Neri R, et al. Evidence of strong quasar feedback in the early Universe. Mon Not R Astron Soc, 2012, 425: L66-L70
[64]  64 Willott C J, Bergeron J, Omont A. Star formation rate and dynamical mass of 108 solar mass black hole host galaxies At redshift 6. Astrophys J, 2015, 801: 123-132
[65]  65 Walter F, Carilli C, Bertoldi F, et al. Resolved molecular gas in a quasar host galaxy at redshift z=6.42. Astrophys J, 2004, 615, L17-L20

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133