全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

VO2热致变色材料:从纳米颗粒到柔性贴膜

DOI: 10.1360/N972015-00580, PP. 2425-2437

Keywords: VO2,节能窗,柔性贴膜,纳米印刷,产业化

Full-Text   Cite this paper   Add to My Lib

Abstract:

VO2(M1/R)具有温度控制的可逆莫特相变性质,当材料的结晶相从VO2(M1,呈半导体状态)转变为VO2(R,呈金属状态)或者反向转变时,其光学、电学等性质发生显著变化.利用这些物理特性变化,VO2可应用于光存储、智能窗、热敏电阻和非致冷焦平面等领域.本文聚焦VO2智能窗的最新研究进展,着重介绍面向现有建筑高耗能玻璃的节能改造而研发的VO2智能节能贴膜的制备、性能、产业化和应用;综述了纳米粉体的合成、表面改性、分散和分散液的制备以及纳米印刷等技术,总结了贴膜的基本物性、耐候性和节能效果,并展望了VO2贴膜的产业化和应用前景.VO2贴膜作为我国自主研发的高科技新材料,针对我国建筑节能领域现实而迫切的应用需求,是老旧建筑玻璃节能改造的一种新材料,值得推广应用.

References

[1]  1 Granqvist C G. Solar energy materials. Adv Mater, 2003, 15: 1789-1803
[2]  2 Granqvist C G, Lans?ker P C, Mlyuka N R, et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Sol Energy Mater Sol Cells, 2009, 93: 2032-2039
[3]  56 Burkhardt W, Christmann T, Franke S, et al. Tungsten and fluorine co-doping of VO2 films. Thin Solid Films, 2002, 402: 226-231
[4]  57 Kiri P, Warwick M E A, Ridley I, et al. Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films, 2011, 520: 1363-1366
[5]  58 Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method. Thin Solid Films, 2003, 436: 269-272
[6]  59 Qazilbash M M, Brehm M, Andreev G O, et al. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys Rev B, 2009, 79: 075107
[7]  60 Burkhardt W, Christmann T, Meyer B K, et al. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345: 229-235
[8]  61 Dai L, Chen S, Liu J J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys Chem Chem Phys, 2013, 15: 11723-11729
[9]  62 Mlyuka N R, Niklasson G A, Granqvist C G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl Phys Lett, 2009, 95: 171909
[10]  63 Zhou J, Gao Y, Liu X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys Chem Chem Phys, 2013, 15: 7505-7511
[11]  64 Chen S, Dai L, Liu J J, et al. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: An optimization and first principle study. Phys Chem Chem Phys, 2013, 15: 17537-17543
[12]  65 Shen N, Chen S, Chen Z, et al. The synthesis and performance of Zr-doped and W-Zr-codoped VO2 nanoparticles and derived flexible foils. J Mater Chem A, 2014, 2: 15087-15093
[13]  66 Sun C, Yan L M, Yue B H, et al. The modulation of metal-insulator transition temperature of vanadium dioxide: A density functional theory study. J Mater Chem C, 2014, 2: 9283-9293
[14]  67 Ren Q H, Wan J Y, Gao Y F. Theoretical study of electronic properties of X-doped (X=F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils. J Phys Chem A, 2014, 118: 11114-11118
[15]  68 Zhang J J, He H Y, Xie Y, et al. Giant reduction of the phase transition temperature for beryllium doped VO2. Phys Chem Chem Phys, 2013, 15: 4687-4690
[16]  69 Chen R, Miao L, Cheng H L, et al. One-step hydrothermal synthesis of V1-xWxO2 (M/R) nanorods with superior doping efficiency and thermochromic properties. J Mater Chem A, 2015, 3: 3726-3738
[17]  3 Gao Y, Luo H, Zhang Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy, 2012, 1: 221-246
[18]  4 Zhou Y, Cai Y F, Hu X, et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J Mater Chem, 2015, 3: 1121-1126
[19]  5 Watanabe H. Intelligent window using a hydrogel layer for energy efficiency. Sol Energy Mater Sol Cells, 1998, 54: 203-211
[20]  6 Théobald F. Hydrothermalstudy of VO2-VO2.5-H2O system. J Less Common Metals, 1977, 53: 55-71
[21]  7 Morin F J. Oxides which show a metal to insulator transition at the neel temperature. Phys Rev Lett, 1959, 3: 34-36
[22]  8 Babulanam S M, Eriksson T S, Niklasson G A, et al. Thermochromic VO2 films for energy-efficient windows. Sol Energy Mater, 1987, 16: 347-363
[23]  9 Kim D H, Kwok H S. Pulsed-laser deposition of VO2 thin-films. Appl Phys Lett, 1994, 65: 3188-3190
[24]  10 Mathevula L, Ngom B D, Kotsedi L, et al. Thermochromic VO2 on zinnwaldite mica by pulsed laser deposition. Appl Surf Sci, 2014, 314: 476-480
[25]  11 Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solid A, 2009, 206: 2155-2160
[26]  12 Jin P, Tanemura S. Formation and thermochromism of VO2 films deposited by Rf magnetron sputtering at low substrate-temperature. Jpn J Appl Phys, 1994, 33: 1478-1483
[27]  13 Qi J, Ning G L, Lin Y. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide. Mater Res Bull, 2008, 43: 2300-2307
[28]  14 Zheng C M, Zhang J L, Luo G B, et al. Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature. J Mater Sci, 2000, 35: 3425-3429
[29]  15 Peng Z F, Jiang W, Liu H. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. J Phys Chem C, 2007, 111: 1119-1122
[30]  16 Rama N, Rao M S R. Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun, 2010, 150: 1041-1044
[31]  17 Nag J, Haglund R F. Synthesis of vanadium dioxide thin films and nanoparticles. J Phys Condens Matter, 2008, 20: 1-14
[32]  18 Gui Z, Fan R, Chen X H, et al. A new metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation. J Solid State Chem, 2001, 157: 250-254
[33]  19 Cao C X, Gao Y F, Luo H J. Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property. J Phys Chem C, 2008, 112: 18810-18814
[34]  20 Ji S D, Zhao Y, Zhang F, et al. Direct formation of single crystal VO2 (R) nanorods by one-step hydrothermal treatment. J Cryst Growth, 2010, 312: 282-286
[35]  21 Son J H, Wei J, Cobden D, et al. Hydrothermal synthesis of monoclinic VO2 micro- and nanocrystals in one step and their use in fabricating inverse opals. Chem Mater, 2010, 22: 3043-3050
[36]  22 Dai L, Cao C, Gao Y, et al. Synthesis and phase transition behavior of undoped VO2 with a strong nano-size effect. Sol. Energy Mater Sol Cells, 2011, 95: 712-715
[37]  23 Chen S H, Ma H, Dai J, et al. Nanostructured vanadium dioxide thin films with low phase transition temperature. Appl Phys Lett, 2007, 90: 101117
[38]  24 Gao Y F, Cao C X, Dai L, et al. Phase and shape controlled VO2 nanostructures by antimony doping. Energy Environ Sci, 2012, 5: 8708-8715
[39]  25 Chen Z, Gao Y, Kang L T, et al. Fine crystalline VO2 nanoparticles: Synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J Mater Chem A, 2014, 2: 2718-2727
[40]  26 Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J Appl Phys, 2010, 108: 063525
[41]  27 Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics with VO2-based core-shell structures: Calculated luminous and solar optical properties. J Appl Phys, 2011, 109: 113515
[42]  28 Lv W Z, Huang D Z, Chen Y M, et al. Synthesis and characterization of Mo-W co-doped VO2 (R) nano-powders by the microwave-assisted hydrothermal method. Ceram Int, 2014, 40: 12661-12668
[43]  29 Wu C Z, Zhang X D, Dai J, et al. Direct hydrothermal synthesis of monoclinic VO2 (M) single-domain nanorods on large scale displaying magnetocaloric effect. J Mater Chem, 2011, 21: 4509-4517
[44]  30 Whittaker L, Velazquez J M, Banerjee S. A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: Facile synthesis, structural characterization, and elucidation of electronic structure. Cryst Eng Commun, 2011, 13: 5328-5336
[45]  31 Zhang Z T, Gao Y F, Kang L T, et al. Effects of a TiO2 buffer layer on solution-deposited VO2 films: Enhanced oxidization durability. J Phys Chem C, 2010, 114: 22214-22220
[46]  32 Li D B, Li M, Pan J, et al. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. ACS Appl Mater Interfaces, 2014, 6: 6555-6561
[47]  33 Wu C Z, Feng F, Feng J, et al. Ultrafast solid-state transformation pathway from new-phased goethite VOOH to paramontroseite VO2 to rutile VO2 (R). J Phys Chem C, 2011, 115: 791-799
[48]  34 Zou J, Peng Y G, Lin H. A low-temperature synthesis of monoclinic VO2 in an atmosphere of air. J Mater Chem A, 2013, 1: 4250-4254
[49]  35 Zhou Y, Ji S D, Li Y M, et al. Microemulsion-based synthesis of V1-xWxO2@SiO2 core-shell structures for smart window applications. J Mater Chem C, 2014, 2: 3812-3819
[50]  36 Wu C Z, Dai J, Zhang X D, et al. Direct confined-space combustion forming monoclinic vanadium dioxides. Angew Chem Int Ed, 2010, 49: 134-137
[51]  37 Jiang B J, Peng X X, Qu Y, et al. A new combustion route to synthesize mixed valence vanadium oxide heterojunction composites as visible-light-driven photocatalysts. ChemCatChem, 2014, 6: 2553-2559
[52]  38 Chen J K, Liu X L, Dai L, et al. Deoxidization of V2O5 powder into VO2 assisted by an electrochemical lithium intercalation technique. Int J Appl Ceram Technol, 2012, 9: 942-946
[53]  39 Yao T, Liu L, Xiao C, et al. Ultrathin nanosheets of half-metallic monoclinic vanadium dioxide with a thermally induced phase transition. Angew Chem Int Ed, 2013, 52: 7554-7558
[54]  40 Du J, Gao Y F, Luo H J, et al. Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol Energy Mater Sol Cells, 2010, 95: 469-475
[55]  41 Du J, Gao Y F, Luo H J, et al. Formation and metal-to-insulator transition properties of VO2-ZrV2O7 composite films by polymer-assisted deposition. Sol Energy Mater Sol Cells, 2011, 95: 1604-1609
[56]  42 Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl Mater Interfaces, 2011, 3: 135-138
[57]  43 Gao Y, Wang S, Kang L, et al. VO2-Sb:SnO2 composite thermochromic smart glass foil. Energy Environ Sci, 2012, 5: 8234-8237
[58]  44 Gao Y F, Wang S B, Luo H J, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core-shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ Sci, 2012, 5: 9947-9947
[59]  45 Zhou J, Gao Y, Liu X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys Chem Chem Phys, 2013, 15: 7505-7511
[60]  46 Wang H W, Yi H, Chen X, et al. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A, 2014, 2: 1165-1173
[61]  47 Li S T, Li Y M, Qian K, et al. Functional fber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers. ACS Appl Mater Interfaces, 2014, 6: 9-13
[62]  48 Zhou Y, Huang A, Li Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils. Nanoscale, 2013, 5: 9208-9213
[63]  49 Li Y M, Ji S D, Gao Y F, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep, 2013, 3: 1370
[64]  50 Liu C, Cao X, Kamyshny A, et al. VO2/Si-Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. J Colloid Interface Sci, 2014, 427: 49-53
[65]  51 Chen Z, Cao C X, Chen S, et al. Crystallised mesoporous TiO2(A)-VO2(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. J Mater Chem A, 2014, 2: 11874-11884
[66]  52 Kim H, Kim Y, Kim K S, et al. Flexible thermochromic window based on hybridized VO2/graphene. ACS Nano, 2013, 7: 5769-5776
[67]  53 Kim H, Kim Y, Kim T, et al. Enhanced optical response of hybridized VO2/graphene films. Nanoscale, 2013, 5: 2632-2636
[68]  54 Goodenough J B. The two components of the crystallographic transition in VO2. J Solid State Chem, 1971, 3: 490-500
[69]  55 Vernardou D, Pemble M E, Sheel D W. Tungsten-doped vanadium oxides prepared by direct liquid injection MOCVD. Chem Vapor Depos, 2007, 13: 158-162

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133