全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

基于纳米粒子掺杂的有机二极管电存储器研究进展

DOI: 10.1360/N972015-01159, PP. 2404-2424

Keywords: 有机电存储,阻变型,纳米粒子掺杂,非易失性,存储机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机二极管电存储器(OrganicDiodeMemories,ODMs)是未来信息存储技术的重要方向,基于纳米粒子掺杂的有机薄膜二极管是有效地设计存储器件与优化存储性能的重要途径.本文介绍了纳米粒子掺杂的有机二极管电存储器的基本原理、存储类型、器件结构以及制备方式,综述了纳米粒子的类型、形貌、掺杂浓度、表面修饰及主体材料对器件存储性能的影响,并在此基础上深入讨论了纳米粒子掺杂的三种存储可能机制丝状电导机制、场致电荷转移机制和载流子的捕获与释放机制.最后,指出了该领域存在的挑战,并对今后的研究方向进行了展望.

References

[1]  93 Ling Q, Song Y, Ding S J, et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Adv Mater, 2005, 17: 455-459
[2]  94 Lim S L, Ling, Teo E Y H, et al. Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chem Mater, 2007, 19: 5148-5157
[3]  95 You Y T, Wang M L, Xuxie H N, et al. Conductance-dependent negative differential resistance in organic memory devices. Appl Phys Lett, 2010, 97: 233301
[4]  96 Xie L H, Ling Q D, Hou X Y, et al. An effective friedel-crafts postfunctionalization of poly(N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on π-stacked polymers for nonvolatile flash memory cell. J Am Chem Soc, 2008, 130: 2120-2121
[5]  97 Yi M, Zhao L, Fan Q, et al. Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes. J Appl Phys, 2011, 110: 063709
[6]  98 Sivaramakrishnan S, Chia P J, Yeo Y C, et al. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nat Mater, 2007, 6: 149-155
[7]  99 Choi B J, Jeong D S, Kim S K, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys, 2005, 98: 033715
[8]  100 Kwan W L, Lei B, Shao Y, et al. Direct observation of localized conduction pathways in photocross-linkable polymer memory. J Appl Phys , 2009, 105: 124516–124521
[9]  101 Huang H H, Shih W C, Lai C H. Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Appl Phys Lett, 2010, 96: 193505
[10]  102 Jakobsson F L E, Crispin X, C?lle M, et al. On the switching mechanism in Rose Bengal-based memory devices. Org Electron, 2007, 8: 559-565
[11]  103 C?lle M, Büchel M, de Leeuw D M. Switching and filamentary conduction in non-volatile organic memories. Org Electron, 2006, 7: 305-312
[12]  104 Lin H T, Lin C Y, Pei Z, et al. Investigating carrier transport paths in organic nonvolatile bistable memory by optical beam induced resistance change. Org Electron, 2011, 12: 1632-1637
[13]  105 Potember R S, Poehler T O, Cowan D O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl Phys Lett, 1979, 34: 405-407
[14]  106 Oyamada T, Tanaka H, Matsushige K, et al. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition. Appl Phys Lett, 2003, 83: 1252-1254
[15]  107 Simmons J G, Verderber R R. New conduction and reversible memory phenomena in thin insulating films. Proc Roy Soc A, 1967, 301: 77-102
[16]  108 Lin H T, Pei Z, Chan Y J. Carrier transport mechanism in a nanoparticle-incorporated organic Bistable memory device. IEEE Electron Device Lett, 2007, 28: 569-571
[17]  1 Liu X, Liu Y, Chen W, et al. Ferroelectric memory based on nanostructures. Nanoscale Res Lett, 2012, 7: 285
[18]  2 Jung J H, Jin J Y, Lee I, et al. Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer. Appl Phys Lett, 2006, 88: 112107
[19]  3 Ling Q D, Liaw D J, Zhu C, et al. Polymer electronic memories: Materials, devices and mechanisms. Prog Polym Sci, 2008, 33: 917-978
[20]  4 Wu C, Li F, Guo T. Efficient tristable resistive memory based on single layer graphene/insulating polymer multi-stacking layer. Appl Phys Lett, 2014, 104: 183105
[21]  5 Mamo M A, Machado W S, van Otterlo W A L, et al. Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite. Org Electron, 2010, 11: 1858-1863
[22]  6 Onlaor K, Tunhoo B, Thiwawong T, et al. Electrical bistability of tris-(8-hydroxyquinoline) aluminum (Alq3)/ZnSe organic-inorganic bistable device. Curr Appl Phys, 2012, 12: 331-336
[23]  7 Son D I, Park D H, Choi W K, et al. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Nanotechnology, 2009, 20: 195203
[24]  8 Kondo T, Lee S M, Malicki M, et al. A nonvolatile organic memory device using ITO surfaces modified by Ag-nanodots. Adv Funct Mater, 2008, 18: 1112-1118
[25]  9 Laiho A, Majumdar H S, Baral J K, et al. Tuning the electrical switching of polymer/fullerene nanocomposite thin film devices by control of morphology. Appl Phys Lett, 2008, 93: 203309
[26]  10 Kim T W, Yang Y, Li F, et al. Electrical memory devices based on inorganic/organic nanocomposites. NPG Asia Mater, 2012, 4: e18
[27]  11 Chu C W, Ouyang J, Tseng J H, et al. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv Mater, 2005, 17: 1440-1443
[28]  12 Xu X, Register R A, Forrest S R. Mechanisms for current-induced conductivity changes in a conducting polymer. Appl Phys Lett, 2006, 89: 142109
[29]  13 Lee H J, Lee J, Park S M. Electrochemistry of conductive polymers. 45. nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM. J Phys Chem B, 2010, 114: 2660-2666
[30]  14 Bo J, Wu Z X, Dong H, et al. A tris (8-hydroxyquinoline) aluminum-based organic bistable device using ITO surfaces modified by Ag nanoparticles. J Phys D Appl Phys, 2013, 46: 445107
[31]  15 Ouisse T, Stéphan O. Electrical bistability of polyfluorene devices. Org Electron, 2004, 5: 251-256
[32]  16 Park J G, Nam W S, Seo S H, et al. Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier. Nano Lett, 2009, 9: 1713-1719
[33]  17 Cho B, Kim T W, Choe M, et al. Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles. Org Electron, 2009, 10: 473-477
[34]  18 Song S, Cho B, Kim T W, et al. Three-dimensional integration of organic resistive memory devices. Adv Mater, 2010, 22: 5048-5052
[35]  19 Ji Y, Zeigler D F, Lee D S, et al. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. Nat Commun, 2013, 4: 2707
[36]  20 Cho B, Kim T W, Song S, et al. Rewritable switching of One diode-one resistor nonvolatile organic memory devices. Adv Mater, 2010, 22: 1228-1232
[37]  21 Paul S, Kanwal A, Chhowalla M. Memory effect in thin films of insulating polymer and C60 nanocomposites. Nanotechnology, 2006, 17: 145
[38]  22 Majumdar H S, Baral J K, ?sterbacka R, et al. Fullerene-based bistable devices and associated negative differential resistance effect. Org Electron, 2005, 6: 188-192
[39]  23 Prakash A, Ouyang J, Lin J L, et al. Polymer memory device based on conjugated polymer and gold nanoparticles. J Appl Phys, 2006, 100: 054309
[40]  24 Ma L P, Liu J, Yang Y. Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett, 2002, 80: 2997-2999
[41]  25 Yook K S, Jeon S O, Joo C W, et al. Organic bistable memory device using MoO3 nanocrystal as a charge trapping center. Org Electron, 2009, 10: 48-52
[42]  26 Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911-918
[43]  27 Fang C, Qi X Y, Fan Q L, et al. A facile route to semiconductor nanocrystal-semiconducting polymer complex using amine-functionalized rod-coil triblock copolymer as multidentate ligand. Nanotechnology, 2007, 18: 035704
[44]  28 Sun H, Zhang J, Zhang H, et al. Pure white-light emission of nanocrystal-polymer composites. Chem Phys Chem, 2006, 7: 2492-2496
[45]  29 Qi X Y, Pu K Y, Fang C, et al. Semiconductor nanocomposites of emissive flexible random copolymers and CdTe nanocrystals: Preparation, characterization, and optoelectronic properties. Macromol Chem Phys, 2007, 208: 2007-2017
[46]  30 Sun H, Zhang J, Zhang H, et al. Preparation of carbazole-containing amphiphilic copolymers: An efficient method for the incorporation of functional nanocrystals. Macromol Mater Eng, 2006, 291: 929-936
[47]  31 Jung S M, Kim H J, Kim B J, et al. Electrical charging of Au nanoparticles embedded by streptavidin-biotin biomolecular binding in organic memory device. Appl Phys Lett, 2010, 97: 153302
[48]  32 Oh S, Kim M, Kim Y, et al. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles. Appl Phys Lett, 2013, 103: 083702
[49]  33 Cui P, Seo S, Lee J, et al. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano, 2011, 5: 6826-6833
[50]  34 Wang H P, Pigeon S, Izquierdo R, et al. Electrical bistability by self-assembled gold nanoparticles in organic diodes. Appl Phys Lett, 2006, 89: 183502
[51]  35 Tseng R J, Baker C O, Shedd B, et al. Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl Phys Lett, 2007, 90: 053101
[52]  36 Leong W L, Lee P S, Lohani A, et al. Non-volatile organic memory applications enabled by in situ synthesis of gold nanoparticles in a self-assembled block copolymer. Adv Mater, 2008, 20: 2325-2331
[53]  37 Ouyang J, Chu C W, Szmanda C R, et al. Programmable polymer thin film and non-volatile memory device. Nature Mater, 2004, 3: 918-922
[54]  38 Ouyang J. Temperature-sensitive asymmetrical bipolar resistive switches of polymer:nanoparticle memory devices. Org Electron, 2014, 15: 1913-1922
[55]  39 Song Y, Ling Q D, Lim S L, et al. Electrically bistable thin-film device based on PVK and GNPs polymer material. IEEE Electron Device Lett, 2007, 28: 107-110
[56]  40 Kiesow A, Morris J E, Radehaus C, et al. Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys, 2003, 94: 6988-6990
[57]  41 Reddy V S, Karak S, Ray S K, et al. Carrier transport mechanism in aluminum nanoparticle embedded AlQ3 structures for organic bistable memory devices. Org Electron, 2009, 10: 138-144
[58]  42 Tseng R J, Tsai C, Ma L, et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nano, 2006, 1: 72-77
[59]  43 Narendar G, Suvra P M, Arun K S, et al. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix. Nanotechnology, 2013, 24: 345202
[60]  44 Lee J, Kim H Y, Zhou H, et al. Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem, 2011, 21: 13316-13326
[61]  45 Naz S, Islam N, Shah M, et al. Enhanced biocidal activity of Au nanoparticles synthesized in one pot using 2, 4-dihydroxybenzene carbodithioic acid as a reducing and stabilizing agent. J Nanobiotechnol, 2013, 11: 1-9
[62]  46 Lai P Y, Chen J S. Electrical bistability and charge transport behavior in Au nanoparticle/poly(N-vinylcarbazole) hybrid memory devices. Appl Phys Lett, 2008, 93: 153305
[63]  47 Bozano L D, Kean B W, Beinhoff M, et al. Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Adv Funct Mater, 2005, 15: 1933-1939
[64]  48 Liu Z, Lee C, Narayanan V, et al. Metal nanocrystal memories-part II: electrical characteristics. IEEE T Eletron Dev, 2002, 49: 1614-1622
[65]  49 Soong Sin J, Jungkil K, Soo Seok K, et al. Graphene-quantum-dot nonvolatile charge-trap flash memories. Nanotechnology, 2014, 25: 255203
[66]  50 Yun D Y, Kwak J K, Jung J H, et al. Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Appl Phys Lett, 2009, 95: 143301
[67]  51 Son D I, You C H, Kim W T, et al. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl Phys Lett, 2009, 94: 132103
[68]  52 Son D I, Kim J H, Park D H, et al. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer. Nanotechnology, 2008, 19: 055204
[69]  53 Chen A. Switching control of resistive switching devices. Appl Phys Lett, 2010, 97: 263505
[70]  54 Jun J, Cho K, Yun J, et al. Switching memory cells constructed on plastic substrates with silver selenide nanoparticles. J Mater Sci, 2011, 46: 6767-6771
[71]  55 Xia X H, Liu X M, Yi M D, et al. Enhancing nonvolatile write-once-read-many-times memory effects with SiO2 nanoparticles sandwiched by poly( N-vinylcarbazole) layers. J Phys D Appl Phys, 2012, 45: 215101
[72]  56 Meyer J, Khalandovsky R, G?rrn P, et al. MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electron. Adv Mater, 2011, 23: 70-73
[73]  57 Li F, Son D I, Seo S M, et al. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl Phys Lett, 2007, 91: 122111
[74]  58 Yun D Y, Jung J H, Lee D U, et al. Effects of CdSe shell layer on the electrical properties of nonvolatile memory devices fabricated utilizing core-shell CdTe-CdSe nanoparticles embedded in a poly(9-vinylcarbazole) layer. Appl Phys Lett, 2010, 96: 123302
[75]  59 Lin C W, Pan T S, Chen M C, et al. Organic bistable memory based on Au nanoparticle/ZnO nanorods composite embedded in poly (vinylpyrrolidone) layer. Appl Phys Lett, 2011, 99: 023303
[76]  60 Hong J Y, Jeon S O, Jang J, et al. A facile route for the preparation of organic bistable memory devices based on size-controlled conducting polypyrrole nanoparticles. Org Electron, 2013, 14: 979-983
[77]  61 Salaoru I, Paul S. Memory devices based on small organic molecules donor-acceptor system. Thin Solid Films, 2010, 519: 559-562
[78]  62 Yang Y, Ouyang J, Ma L, et al. Electrical switching and bistability in organic/polymeric thin Films and memory devices. Adv Funct Mater, 2006, 16: 1001-1014
[79]  63 Paul S. Realization of nonvolatile memory devices using small organic molecules and polymer. IEEE Trans Nanotechnol, 2007, 6: 191-195
[80]  64 Lee M H, Jung J H, Shim J H, et al. Electrical bistabilities and stabilities of organic bistable devices fabricated utilizing [6,-phenyl-C85 butyric acid methyl ester blended into a polymethyl methacrylate layer. Org Electron, 2011, 12: 1341-1345
[81]  65 Song S, Jang J, Ji Y, et al. Twistable nonvolatile organic resistive memory devices. Org Electron, 2013, 14: 2087-2092
[82]  66 Liu G, Ling Q D, Teo E Y H, et al. Electrical conductance tuning and bistable switching in poly(N-vinylcarbazole)-carbon nanotube composite films. ACS Nano, 2009, 3: 1929-1937
[83]  67 Bera S, Mondal S P, Naskar D, et al. Flexible and transparent nanocrystal floating gate memory devices using silk protein. Org Electron, 2014, 15: 1767-1772
[84]  68 Zhang Q, Pan J, Yi X, et al. Nonvolatile memory devices based on electrical conductance tuning in poly (N-vinylcarbazole)-graphene composites. Org Electron, 2012, 13: 1289-1295
[85]  69 Liu G, Zhuang X, Chen Y, et al. Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Appl Phys Lett, 2009, 95: 253301
[86]  70 Son D I, Kim T W, Shim J H, et al. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett, 2010, 10: 2441-2447
[87]  71 Kou L, Li F, Chen W, et al. Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory. Org Electron, 2013, 14: 1447-1451
[88]  72 Yang R, Zhu C, Meng J, et al. Isolated nanographene crystals for nano-floating gate in charge trapping memory. Sci Rep, 2013, 3: 2126
[89]  73 Tseng R J, Huang J, Ouyang J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett, 2005, 5: 1077-1080
[90]  74 Reddy V S, Karak S, Dhar A. Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles. Appl Phys Lett, 2009, 94: 173304
[91]  75 Son D I, Park D H, Kim J B, et al. Bistable organic memory device with gold nanoparticles embedded in a conducting poly(N-vinylcarbazole) colloids hybrid. J Phys Chem C, 2010, 115: 2341-2348
[92]  76 Onlaor K, Thiwawong T, Tunhoo B. Electrical switching and conduction mechanisms of nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polyvinylpyrrolidone. Org Electron, 2014, 15: 1254-1262
[93]  77 Lin H T, Pei Z W, Chen J R, et al. A new nonvolatile bistable polymer-nanoparticle memory device. IEEE Electron Device Lett, 2007, 28: 951-953
[94]  78 Ouyang J, Chu C W, Sieves D, et al. Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells. Appl Phys Lett, 2005, 86: 123507
[95]  79 Ouyang J, Chu C W, Tseng R J H, et al. Organic Memory Device Fabricated Through Solution Processing. P IEEE, 2005, 93: 1287-1296
[96]  80 Ouyang J. Polymer:nanoparticle memory devices with electrode-sensitive bipolar resistive switches by exploring the electrical contact between a bulk metal and metal nanoparticles. Org Electron, 2013, 14: 665-675
[97]  81 Ouyang J. Materials effects on the electrode-sensitive bipolar resistive switches of polymer:gold nanoparticle memory devices. Org Electron, 2013, 14: 1458-1466
[98]  82 Kanwal A, Chhowalla M. Stable, three layered organic memory devices from C60 molecules and insulating polymers. Appl Phys Lett, 2006, 89: 203103
[99]  83 Wu C, Li F, Zhang Y, et al. Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Appl Phys Lett, 2011, 99: 042108
[100]  84 Yang Y, Ma L, Wu J. Organic thin-film memory. MRS Bull, 2004, 29: 833-837
[101]  85 Portney N G, Martinez-Morales A A, Ozkan M. Nanoscale memory characterization of virus-templated semiconducting quantum dots. ACS Nano, 2008, 2: 191-196
[102]  86 Hung Y C, Hsu W T, Lin T Y, et al. Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl Phys Lett, 2011, 99: 253301
[103]  87 Ko Y, Kim Y, Baek H, et al. Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles. ACS Nano, 2011, 5: 9918-9926
[104]  88 Hota M K, Bera M K, Kundu B, et al. A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater, 2012, 22: 4493-4499
[105]  89 Jubong P, Minseok J, Joonmyoung L, et al. Improved switching uniformity and speed in filament-type RRAM using lightning pod effect. IEEE Electron Device Lett, 2011, 32: 63-65
[106]  90 Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nano, 2010, 5: 148-153
[107]  91 Liu S J, Lin Z H, Zhao Q, et al. Flash-memory effect for polyfluorenes with on-chain iridium(III) complexes. Adv Funct Mater, 2011, 21: 979-985
[108]  92 Majee S K, Majumdar H S, Bolognesi A, et al. Electrical bistability and memory applications of poly(p-phenylenevinylene) films. Synth Met, 2006, 156: 828-832

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133