全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

左侧颞下叶在面孔信息加工中的作用:一项ECoG案例研究

DOI: 10.1360/N972015-00366, PP. 2438-2446

Keywords: 电刺激,颅内记录,梭状回面孔区,面孔知觉,精细加工

Full-Text   Cite this paper   Add to My Lib

Abstract:

功能核磁共振成像(fMRI)的研究已经发现,人类梭状回包含专门加工面孔的区域,通常被称为梭状回面孔区(FFA).然而,仅依靠fMRI技术本身不能直接说明FFA与面孔加工间存在因果关系.结合fMRI、颅内电极记录、电刺激技术可直接为二者的因果关系提供重要的证据.本研究借助一例难得的颅内置入电极恰好与左侧FFA重叠的癫痫病例系统地考察了左侧FFA的功能属性.当前研究结果显示,左侧FFA的血氧水平依赖反应和电生理反应都表现出较强的面孔选择性;电刺激与左侧FFA重叠的电极不影响真人面孔知觉;电刺激左侧FFA引起面孔形状感知变化.本研究揭示了左侧FFA在面孔精细特征的加工中起着重要的作用,它在功能上可能区别于右侧对应区域.

References

[1]  1 Kanwisher N, McDermott J, Chun M M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J Neurosci, 1997, 17: 4302-4311
[2]  2 Allison T, Puce A, Spencer D D, et al. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex, 1999, 9: 415-430
[3]  3 Barton J J, Press D Z, Keenan J P, et al. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology, 2002, 58: 71-78
[4]  4 Schiltz C, Rossion B. Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 2006, 32: 1385-1394
[5]  5 Puce A, Allison T, McCarthy G. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cerebral Cortex, 1999, 9: 445-458
[6]  6 Mundel T, Milton T G, Dimitrov W, et al. Transient inability to distinguish between faces: Electrophysiologic studies. J Clin Neurophysiol, 2003, 20: 102-110
[7]  7 Parvizi J, Jacques C, Foster B L, et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci, 2012, 32: 14915-14920
[8]  8 Rangarajan V, Hermes D, Foster B L, et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci, 2014, 34: 12828-12836
[9]  9 Wilson H R, Richards W A. Curvature and separation discrimination at texture boundaries. J Opt Soc Am A, 1992, 9: 1653-1662
[10]  10 Ahmadi M, QuianQuiroga R. Automatic denoising of single-trial evoked potentials. NeuroImage, 2013, 66: 672-680
[11]  11 Pfurtscheller G, Cooper R. Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol, 1975, 38: 93-96
[12]  12 Allison T, Ginter H, McCarthy G, et al. Face recognition in human extrastriate cortex. J Neurophysiol, 1994, 71: 821-825
[13]  13 Rosburg T, Ludowig E, Dümpelmann M, et al. The effect of face inversion on intracranial and scalp recordings of event-related potentials psychophysiology. Psychophysiol, 2010, 47: 147-157
[14]  14 Bentin S, Allison T, Puce A, et al. Electrophysiological studies of face perception in humans. J Cogn Neurosci, 1996, 8: 551-565
[15]  15 Rossion B, Caharel S. ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision Res, 2011, 51: 1297-1311
[16]  16 Miller K J, Honey C J, Hermes D, et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage, 2014, 85: 711-720
[17]  17 Rousselet G A, Husk J S, Bennett P J, et al. Single-trial EEG dynamics of object and face visual processing. NeuroImage, 2007, 36: 843-862
[18]  18 Grill-Spector K, Knouf N, Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci, 2004, 7: 555-562
[19]  19 Xu Y. Revisiting the role of the fusiform face area in visual expertise. Cerebral Cortex, 2005, 15: 1234-1242
[20]  20 Prince S E, Dennis N A, Cabeza R. Encoding and retrieving faces and places: Distinguishing process- and stimulus-specific differences in brain activity. Neuropsychologia, 2009, 47: 2282-2289
[21]  21 Dobel C, Putsche C, Zwitserlood P, et al. Early left-hemispheric dysfunction of face processing in congenital prosopagnosia: An MEG study. PLoS One, 2008, 3: e2326
[22]  22 Meng M, Cherian T, Singal G, et al. Lateralization of face processing in the human brain. Proc Biol Sci, 2012, 279: 2052-2061
[23]  23 Loffler G, Yourganov G, Wilkinson F, et al. fMRI evidence for the neural representation of faces. Nat Neurosci, 2005, 8: 1386-1390
[24]  24 Loffler G. Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Res, 2008, 48: 2106-2127
[25]  25 Gilaie-Dotan S, Malach R. Sub-exemplar shape tuning in human face-related areas. Cerebral Cortex, 2007, 17: 325-338
[26]  26 Caldara R, Seghier M L. The fusiform face area responds automatically to statistical regularities optimal for face categorization. Hum Brain Mapp, 2009, 30: 1615-1625
[27]  27 Jiang F, Dricot L, Blanz V, et al. Neural correlates of shape and surface reflectance information in individual faces. Neuroscience, 2009, 163: 1078-1091
[28]  28 Ma Y, Han S. Functional dissociation of the left and right fusiform gyrus in self-face recognition. Hum Brain Mapp, 2012, 33: 2255-2267
[29]  29 Shu M, Li Z, Cheng C, et al. Functional relationship between the left and right fusiform face areas. J Vision, 2013, 13: 176
[30]  30 Nakajima K, Minami T, Tanabe H C, et al. Facial color processing in the face-selective regions: An fMRI study. Hum Brain Mapp, 2014, 35: 4958-4964
[31]  31 Caldara R, Seghier M L, Rossion B, et al. The fusiform face area is tuned for curvilinear patterns with more high-contrasted elements in the upper part. NeuroImage, 2006, 31: 313-319

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133