全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

有机金属卤化物钙钛矿太阳能电池的研究进展

DOI: 10.1360/N972014-00956, PP. 581-592

Keywords: 有机金属卤化物钙钛矿,太阳能电池,禁带宽度,空穴传输层,界面,密度泛函理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

2009年CH3NH3PbI3太阳能电池问世,因其具备制备工艺相对简单、光电转换率高等优点,引起了国内外研究者极大的关注.近几年,有机金属卤化物钙钛矿太阳能电池发展迅速,光伏性能不断得到提高.然而CH3NH3PbI3电池器件受钙钛矿材料本身禁带宽度的限制,对太阳光的吸收光谱不够宽,并且其重要组成部分的Pb元素,具有一定毒性.因此制备带隙更窄、环境友好及化学稳定性好的有机金属卤化物钙钛矿太阳能电池具有重要的应用价值.本文评述了以寻找Pb的替代元素、提高入射光吸收效率、改善太阳能电池光伏性能为目标所进行的钙钛矿材料禁带宽度调控方面的研究成果,比较了有机、无机空穴传输材料和无空穴传输材料钙钛矿太阳能电池的光伏性能,讨论了界面结构在电子和空穴输运过程中的重要性.介绍了目前在CH3NH3PbI3及类似有机金属卤化物钙钛矿材料的原子结构、能带结构和禁带宽度等理论研究方面的进展,讨论了常见计算方法的优缺点和需要注意的问题,为开展有机金属卤化物钙钛矿的理论研究提供了思路.最后提出该领域目前存在的问题以及对未来的展望.

References

[1]  1 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050-6051
[2]  2 Zhou H, Chen Q, Li G, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542-546
[3]  3 Kamat P V. Organometal halide perovskites for transformative photovoltaics. J Am Chem Soc, 2014, 136: 3713-3714
[4]  4 Gao P, Gr?tzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications. Energ Environ Sci, 2014, 7: 2448-2463
[5]  11 Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295-298
[6]  12 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3: 4088-4093
[7]  13 Boix P P, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17: 16-23
[8]  14 Umari P, Mosconi E, De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep, 2014, 4: 4467-4473
[9]  15 Even J, Pedesseau L, Jancu J M, et al. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett, 2013, 4: 2999-3005
[10]  16 Brivio F, Walker A B, Walsh A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater, 2013, 1: 042111-042115
[11]  17 Feng J, Xiao B. Crystal structures, optical Properties, and effective mass tensors of CH3NH3PbX3(X = I and Br) phases predicted from HSE06. J Phys Chem Lett, 2014, 5: 1278-1282
[12]  18 Borriello I, Cantele G, Ninno D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys Rev B, 2008, 77: 235214-235222
[13]  19 Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1: 5628-5641
[14]  20 Mosconi E, Amat A, Nazeeruddin M K, et al. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phy Chem C, 2013, 117: 13902-13913
[15]  26 Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510-519
[16]  27 Ogomi Y, Morita A, Tsukamoto S, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett, 2014, 5: 1004-1011.
[17]  28 Hao F, Stoumpos C C, Chang R P, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc, 2014, 136: 8094-8099
[18]  29 Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 2014, 8: 489-494
[19]  30 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395-398
[20]  41 Christians J A, Fung R C, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758-764
[21]  42 Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Commun, 2014, 5: 3834-3839
[22]  43 Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134: 17396-17399
[23]  44 Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energ Environ Sci, 2013, 6: 3249-3253
[24]  45 Shi J, Dong J, Lv S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl Phys Lett, 2014, 104: 063901-063904
[25]  46 Marchioro A, Teuscher J, Friedrich D, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8: 250-255
[26]  47 Liu F, Zhu J, Wei J, et al. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett, 2014, 104: 253508-253512
[27]  62 Tanaka K, Takahashi T, Ban T, et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun, 2003, 127: 619-623
[28]  63 Ishhara T. Optical properties of PbI-based perovskite structures. J Lumin, 1994, 60-61: 269-274
[29]  64 Even J, Pedesseau L, Katan C. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications. Proc SPIE, 2014, 9140: 91400Y
[30]  23 Frost J M, Butler K T, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett, 2014, 14: 2584-2590
[31]  24 Mitzi D B, Wang S, Field C A, et al. Conducting layered organic-inorganic halides containing (1 1 0)-oriented perovskite sheets. Science, 1995, 267: 1473-1476 25 Lang L, Yang J H, Liu H R, et al. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys Lett A, 2014, 378: 290-293
[32]  31 Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344-347
[33]  32 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341-344
[34]  33 Gratzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838-842
[35]  34 Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764-1769
[36]  35 Ryu S, Noh J H, Jeon N J, et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci, 2014, 7: 2614-2618
[37]  36 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591-597
[38]  37 Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7: 486-491
[39]  38 Krishnamoorthy T, Kunwu F, Boix P P, et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A, 2014, 2: 6305-6309
[40]  39 Bi D, Yang L, Boschloo G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett, 2013, 4: 1532-1536
[41]  40 Aharon S, Gamliel S, Cohen B E, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys, 2014, 16: 10512-10518
[42]  48 Chang Y H, Park C H, Matsuishi K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic- organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J Korean Phys Soc, 2004, 44: 889-893
[43]  49 Chiarella F, Zappettini A, Licci F, et al. Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br). Phys Rev B, 2008, 77: 045129-045134
[44]  50 Lindblad R, Bi D, Park B-W, et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett, 2014, 5: 648-653
[45]  51 Kim J, Lee S-H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett, 2014, 5: 1312-1317
[46]  52 Yin W-J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903-063907
[47]  53 Miller J L. Unusual defect physics underlies perovskite solar cells' exceptional performance. Phys Today, 2014, 67: 13-15
[48]  54 Wang Y, Gould T, Dobson J F, et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys Chem Chem Phys, 2014, 16: 1424-1429
[49]  55 Geng W, Zhang L, Zhang Y-N, et al. First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C, 2014, 118: 19565-19571
[50]  56 Brivio F, Butler K T, Walsh A, et al. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B, 2014, 89: 155204-155209
[51]  57 Umebayashi T, Asai K, Kondo T, et al. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B, 2003, 67: 155405-155410
[52]  58 Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207-8215
[53]  59 Feng J, Xiao B. Effective masses and electronic and optical properties of nontoxic MASnX3(X = Cl, Br, and I) perovskite structures as solar cell absorber: A theoretical study using HSE06. J Phys Chem C, 2014, 118: 19655-19660
[54]  60 Du M H. Efficient carrier transport in halide perovskites: Theoretical perspectives. J Mater Chem A, 2014, 2: 9091-9098
[55]  61 Qiu J, Qiu Y, Yan K, et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013, 5: 3245-3248
[56]  65 Tang L C, Chang C S, Huang J Y. Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J Phys: Condens Matter, 2000, 12: 9129-9143
[57]  66 Schwarz U, Wagner F, Syassen K, et al. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3. Phys Rev B, 1996, 53: 12545-12548
[58]  5 Kawamura Y, Mashiyama H, Hasebe K. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J Phys Soc Jpn, 2002, 71: 1694-1697
[59]  6 Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys, 1987, 87: 6373-6378
[60]  7 Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019-9038
[61]  8 Amat A, Mosconi E, Ronca E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett, 2014, 14: 3608-3616
[62]  9 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643-647 10 Bi D, Moon S J, H?ggman L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv, 2013, 3: 18762-18766
[63]  21 Giorgi G, Fujisawa J I, Segawa H, et al. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J Phys Chem Lett, 2013, 4: 4213-4216
[64]  22 Wasylishen R E, Knop O, Macdonald J B. Cation rotation in methylammonium lead halides. Solid State Commun, 1985, 56: 581-582

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133