A series of tetrachloroquinazolin-2,4-dione derivatives were synthesized using appropriate synthetic route and characterized by IR, 1H NMR, MS, and elemental analysis. The synthesized compounds were evaluated for their preliminary in vitro antibacterial activity towards Salmonella typhi, Staphylococcus aureus, and Bacillus cereus. 1. Introduction Pyrimidine and quinazoline derivatives have occupied a unique position in medicinal chemistry; the pyrimidine ring is present in a large number of biological important compounds [1] such as alkaloids, drugs, and agrochemicals. Furthermore, pyrimidine and condensed pyrimidines have received much attention over the years because of their interesting biological and pharmacological properties as sedatives [2] and antibacterial [3–8], antimalarial [2], analgesic [2, 4, 7], anti-inflammatory [2, 3, 7], anticonvulsant [8], antipyretic [5], antiparasitic [5], antifungal [6, 9], antitoxic [10], antiviral [8, 10, 11], anticancer [12–15], and DNA-binding activities [14]. This encouraged us to develop new synthetic route for the synthesis of new quinazoline derivatives by introducing a heterocyclic moiety directly or through side chain in position 3 starting with 3-(2-chloromethylcarbonylamino)tetrachloro-quinazolin-2,4-dione 2. We anticipated that these novel heterocyclic compounds would possess certain pharmacological activities. 2. Results and Discussion The reaction sequences employed for synthesis of the target compounds are shown in Scheme 1, and their physical properties are depicted in Table 1. The key intermediate in the present study, 3-(2-chloromethylcarbonylamino)tetrachloroquinazolin-2,4-dione 2, was prepared by the reaction of 3-aminotetrachloroquinazolin-2,4-dione [16] 1 with chloroacetyl chloride. Reaction of the starting compound 2 with potassium isothiocyanate gave 3. It was expected that the imino group could be hydrolyzed but ammonia odour was not detected during the reaction. The preparation of 4a,b was achieved by the reaction of compound 2 with urea and/or thiourea under basic condition. Compound 5 was synthesized by heating compound 2 with piperidine in dioxane. Table 1: Physical properties and elemental analysis data. Scheme 1 The reaction of compound 2 with potassium isothiocyanate may proceed according to the mechanism (Dimroth-type rearrangement) [17] shown in Scheme 2. Scheme 2 Formation of compounds 4a and 4b may proceed according to the mechanism shown in Scheme 3. Scheme 3 3. Biological Activity Salmonella typhi, Staphylococcus aureus, and Bacillus cereus were obtained from the Faculty of
References
[1]
S. Ostrowski, J. Swat, and M. Makosza, “A preparative method for synthesis of 4,5,6-trichloropyrimidine,” Arkivoc, vol. 1, no. 6, pp. 905–908, 2000.
[2]
E. A. Bakhite, S. M. Radwan, and A. M. Kamal El-Dean, “Synthesis of novel pyridothienopyrimidines, pyridothienopyrimidothiazines, pyridothienopyrimidobenzthiazoles and triazolopyridothienopyrimidines,” Journal of the Chinese Chemical Society, vol. 47, no. 5, pp. 1105–1113, 2000.
[3]
M. I. Younes, H. H. Abbas, and S. A. M. Metwally, “Synthesis of ethyl-5-amino-1-(5-ethyl-5H-1,2,4-triazino [5,6-b]indol-3-yl)-1H-pyrazole-4-carboxylate and pyrazolo[3,4-d]pyrimidine derivatives,” Pharmazine, vol. 46, no. 2, pp. 98–100, 1991.
[4]
J. L. Rideout, T. A. Krenitsky, E. Y. Chao, G. B. Elion, R. B. Williams, and V. S. Latter, “Pyrazolo[3,4-d]pyrimidine ribonucleosides as anticoccidials. 3. Synthesis and activity of some nucleosides of 4-[(arylalkenyl)thio]pyrazolo[3,4-d]pyrimidines,” Journal of Medicinal Chemistry, vol. 26, no. 10, pp. 1489–1494, 1983.
[5]
J. L. Rideout, T. A. Krenitsky, G. W. Koszalka et al., “Pyrazolo[3,4-d]pyrimidine ribonucleosides as anticoccidials. 2. Synthesis and activity of some nucleosides of 4-(alkylamino)-1H-pyrazolo[3,4-d]pyrimidines,” Journal of Medicinal Chemistry, vol. 25, no. 9, pp. 1040–1044, 1982.
[6]
M. G. Marie, D. M. Aly, and M. M. Mishrikey, “A new synthesis of pyrazolo[1,5-c]pyrimidines from acetylenic β-diketones,” Bulletin of the Chemical Society of Japan, vol. 65, no. 12, pp. 3419–3422, 1992.
[7]
F. Gatta, F. Perotti, L. Gradoni et al., “Synthesis of some 1-(dihydroxypropyl)pyrazolo[3,4-d]-pyrimidines and in vivo evaluation of their antileishmanial and antitrypanosomal activity,” European Journal of Medicinal Chemistry, vol. 25, no. 5, pp. 419–424, 1990.
[8]
B. G. Ugarkar, H. B. Cottam, P. A. Mekernan, R. K. Robins, and G. R. Revankar, “Synthesis and antiviral/antitumor activities of certain pyrazolo[3,4-d]pyrimidine-4(5H)-selone nucleosides and related compounds,” Journal of Medicinal Chemistry, vol. 27, no. 8, pp. 1026–1030, 1984.
[9]
G. M. Makara, W. Ewing, Y. Ma, and E. Wintner, “Synthesis of bicyclic pyrimidine derivatives as ATP analogues,” Journal of Organic Chemistry, vol. 66, no. 17, pp. 5783–5789, 2001.
[10]
D. J. Miller, K. Ravikumar, H. Shen, J. K. Suh, S. M. Kerwin, and J. D. Robertus, “Structure-based design and characterization of novel platforms for ricin and shiga toxin inhibition,” Journal of Medicinal Chemistry, vol. 45, no. 1, pp. 90–98, 2002.
[11]
E. R. El-Bendary and F. A. Badria, “Synthesis, DNA-binding, and antiviral activity of certain pyrazolo[3,4- d]pyrimidine derivatives,” Archiv der Pharmazie, vol. 333, no. 4, pp. 99–103, 2000.
[12]
J. Balzarini and C. McGuigan, “Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication,” Journal of Antimicrobial Chemotherapy, vol. 50, no. 1, pp. 5–9, 2002.
[13]
A. M. Shalaby, O. A. Fathalla, E. M. M. Kassem, and M. E. A. Zaki, “Synthesis of new 5-N-pyrazolyl amino acids, pyrazolopyrimidines and pyrazolopyridines derivatives,” Acta Chimica Slovenica, vol. 47, no. 2, pp. 187–203, 2000.
[14]
E. I. Al-Afaleq and S. A. Abubshait, “Heterocyclic o-aminonitriles: preparation of pyrazolo[3,4-d]-pyrimidines with modification of the substituents at the 1-position,” Molecules, vol. 6, no. 7, pp. 621–638, 2001.
[15]
P. J. Bhuyan, H. N. Borah, K. C. Lekhok, and J. S. Sandhu, “Studies on uracils: a facile one-pot synthesis of pyrazolo[3,4-d]pyrimidines,” Journal of Heterocyclic Chemistry, vol. 38, no. 2, pp. 491–493, 2001.
[16]
M. A. Hassan, A. M. M. Younes, M. M. Taha, and A. H. Abdel-Monsef, “Synthesis and reactions of 3-aminotetrachloroquinazolin-2,4-dione,” European Journal of Chemistry, vol. 2, no. 4, pp. 514–518, 2011.
[17]
R. A. Finch, G. R. Revankar, and P. K. Chan, “Structural and functional relationships of toyocamycin on NPM-translocation,” Anti-Cancer Drug Design, vol. 12, no. 3, pp. 205–215, 1997.
[18]
K. J. Ryan and C. G. Ray, Sherris Medical Microbiology, McGraw Hill, 4th edition, 2004.
[19]
C. D. Selassie, R. L. Li, M. Poe, and C. Hansch, “On the optimization of hydrophobic and hydrophilic substituent interactions of 2,4-diamino-5-(substituted-benzyl)pyrimidines with dihydrofolate reductase,” Journal of Medicinal Chemistry, vol. 34, no. 1, pp. 46–54, 1991.
[20]
G. C. Cheng, “3 some pyrimidines of biological and medicinal interest-I,” Progress in Medicinal Chemistry, vol. 6, no. C, pp. 67–134, 1969.
[21]
D. B. Mc Nair-Scott, T. L. V. Ulbrich, M. L. Rogers, E. Chu, and C. Rose, “Effect of substituted pyrimidines on growth and biosynthesis of microorganisms,” Cancer Research, vol. 19, pp. 15–19, 1959.