全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Carbonylation of 2-Propyn-1-ol and 2-Methyl-3-butyn-2-ol in an Oscillatory Mode

DOI: 10.1155/2012/819190

Full-Text   Cite this paper   Add to My Lib

Abstract:

The oscillatory modes of oxidative carbonylation reaction of two new substrates—2-methyl-3-butyn-2-ol and 2-propyn-1-ol in homogeneous system PdI2-KI-CO-O2-CH3OH are found. Borders of oscillatory areas are drawn, the basic products of reaction are identified, and probable processes routes are offered. 1. Introduction The phenomenon of intermediates concentration oscillations is found already in several tens of homogeneous [1] and heterogeneous [2] chemical systems. The most interesting thing, in our opinion, is the oscillations occurring in homogeneous catalysis conditions. They are evolving out of intermediates complex interactions, which are formed during process. So this type of oscillations has a chemical nature only. Influence of diffusion, processes of mass and heat exchange, certainly, can be observed in these systems, but these processes, to all appearance, are not responsible for an occurrence of concentration oscillations in the homogeneous systems. We were lucky to find out oscillatory modes of oxidative carbonylation reactions of two new alkynes: 2-methyl-3-butyn-2-ol (MB) and 2-propyn-1-ol (P). As far as we know it is the first mention of oscillatory process with participation of oxygen containing alkynes in metal complexes catalysis conditions. In early works we investigated the oscillations in palladium halogenide solutions in reactions of alkynes oxidative carbonylation [3–11]. These are examples of reactions in which complex products—carboxylic acids and their derivatives—are synthesized from simple substances-H2O, CH3OH, CO, and so on. The carbonylation reactions are interesting with relation to important products of organic synthesis obtaining 2-methyl-3-butyn-2-ol is that used as semiproduct in synthesis of fragrance compounds, medical products, and vitamins, applied as anticorrosive means to protection of the petroleum equipment, the modifier of motor fuels, emulgators. MB is an interesting research object. On the one hand, it has triple bond in the molecule, and so it can participate in reactions of hydrogenation, halogenations and other addition processes on the triple bond. It is active also in reactions of oligomerization and polymerization, and owing to presence of hydroxyl groups MB is the participant of reactions that are characteristic for alcohols generally, and for tertiary alcohols particularly. Finally, MB participates in reactions of carbonylation as any unsaturated reactant. MB reacts in butanol with nickel carbonyl in the presence of HCl even at room temperature and gives as main product butylic ether of

References

[1]  R. J. Field and M. Burger, Eds., Oscillations and Travelling Waves in Chemical Systems, John Wiley & Sons, New York, NY, USA, 1985.
[2]  M. M. Slin’ko and N. I. Jaeger, “Oscillating heterogeneous catalytic systems,” in Studies in Surface Science and Catalysis, B. Deimon and J. T. Yates, Eds., vol. 86, Elsevier Science, Amsterdam, The Netherlands, 1994.
[3]  G. M. Shul’akovsky, O. N. Temkin, N. V. Bykanova, and A. N. Nyrkova, “Chemical kinetics,” in Catalysis: Kinetic Models of Liquid-Phase Reactions, p. 112, IPC, Chernogolovka, Russia, 1985.
[4]  A. V. Malashkevich, L. G. Bruk, and O. N. Temkin, “New oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylation,” Journal of Physical Chemistry A, vol. 101, no. 51, pp. 9825–9827, 1997.
[5]  L. G. Bruk, I. V. Oshanina, A. S. Zakieva, A. P. Kozlova, and O. N. Temkin, “Critical phenomena in homogeneous catalytic reaction of acetylene carbonylation to maleic anhydride,” Kinetics and Catalysis, vol. 39, no. 2, pp. 167–172, 1998.
[6]  S. N. Gorodskii, A. N. Zakharov, A. V. Kulik, L. G. Bruk, and O. N. Temkin, “Oxidative carbonylation of alkynes in an oscillation mode: I. concentration limits for oscillations in the course of phenylacetylene carbonylation and possible mechanisms of the process,” Kinetics and Catalysis, vol. 42, no. 2, pp. 251–263, 2001.
[7]  S. N. Gorodskii, E. S. Kalenova, L. G. Bruk, and O. N. Temkin, “Oxidative carbonylation of alkynes in self-oscillating mode. Effect of the nature of substrates on the dynamic behavior of reaction system,” Russian Chemical Bulletin, vol. 7, pp. 1534–1543, 2003.
[8]  S. N. Gorodsky, A. V. Kurdiukov, and O. N. Temkin, “ICC 14 pre-symposium,” in Proceedings of the International Symposium on Creation and Control of Advanced Selective Catalysis as the Celebration of the 50th Anniversary of the Catalysis Society of Japan, p. 39, Japan, Kyoto, 2008.
[9]  S. N. Gorodsky and A. V. Kurdiukov, “Oxidative carbonylation of dimethylethinylcarbinol in oscillatory mode,” Review MITHT, vol. 3, no. 3, pp. 85–88, 2008 (Russian).
[10]  S. N. Gorodsky, A. V. Kurdiukov, and O. N. Temkin, “Oscillating regime in the propargyl alcohol carbonylation reaction,” Review MITHT, vol. 5, no. 1, pp. 35–41, 2008 (Russian).
[11]  S. N. Gorodsky, L. G. Bruk, A. E. Istomina, A. V. Kurdiukov, and O. N. Temkin, “Alkynes carbonylation reactions in solutions of palladium complexes as a new class of oscillatory processes,” Topics in Catalysis, vol. 52, no. 6-7, pp. 557–562, 2009.
[12]  E. D. Bergmann and E. Zimkin, “The reaction of nickel carbonyl with ethynyldimethylcarbinol and isopropenylacetylene,” Journal of the Chemical Society (Resumed), pp. 3455–3457, 1950.
[13]  J. Tsuji and T. Nogi, “Organic synthesis by means of noble metal compound XXIV. Palladium-catalyzed carbonylation of propargyl alcohols and propargyl chloride,” Tetrahedron Letters, vol. 7, no. 16, pp. 1801–1804, 1966.
[14]  N. S. Zefirov, Chemical Encyclopedia, vol. 5, Great Russian Encyclopedia, Moscow, Russia, 1998.
[15]  E. R. H. Jones, T. Y. Shen, and M. C. Whiting, “Researches on acetylenic compounds. Part XXII. The reaction between nickel carbonyl and monosubstituted acetylenic compounds,” Journal of the Chemical Society, pp. 230–236, 1950.
[16]  R. W. Rosenthal, L. H. Schwartzman, N. P. Greco, and R. Proper, “Carboxylation of propargyl alcohol,” Journal of Organic Chemistry, vol. 28, no. 10, pp. 2835–2838, 1963.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133