全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2015 

乙烯抑制剂对钾缺乏棉花根系生长和侧根形成的影响

DOI: 10.11963/issn.1002-7807.201504009, PP. 362-371

Keywords: 1-氨基环丙烷基羧酸(ACC),Co2+,根系伸长,侧根形成,叶面积

Full-Text   Cite this paper   Add to My Lib

Abstract:

水培条件下,通过用乙烯前体1-氨基环丙烷基羧酸(ACC)和乙烯抑制剂氨氧基乙酸(AOA)、Co2+和Ag+分别处理棉花幼苗根系和叶片,研究其对钾缺乏棉花根系伸长和侧根形成的影响,探讨钾缺乏棉花根系伸长和侧根形成与乙烯生成增加之间的关系。结果显示,钾充分营养液中,添加ACC显著抑制了棉花根系伸长和侧根形成。钾缺乏营养液中,添加ACC加重了对根系伸长和侧根发生的抑制;添加AOA和Ag+分别显著降低了根系长度和侧根数;添加Co2+显著提高了根系长度,但其高浓度显著减少了侧根数。由此可见,钾缺乏诱导乙烯释放增加或许是根系伸长受抑制的原因。钾缺乏条件下Co2+处理叶片显著增加了叶面积、根系长度和侧根数,这表明改善叶片生长可积极调节根系生长和发育。

References

[1]  Hodge A, Berta G, Doussan C, et al. Plant root growth, architecture and function[J]. Plant and Soil, 2009, 321: 153-187.
[2]  Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell and Environment, 2005, 28: 67-77.
[3]  Nibau C, Gibbs D J, Coates J C. Branching out in new directions: The control of root architecture by lateral root formation[J]. New Phytologist, 2008, 179: 595-614.
[4]  Gibbs D J, VoB U, Harding S A, et al. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis[J]. New Phytologist, 2014, 203: 1194-1207.
[5]  López-Bucio J, Cruz-Ram?覦?蘖 rez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280-287.
[6]  Desnos T. Root branching responses to phosphate and nitrate[J]. Current Opinion in Plant Biology, 2008, 11: 82-87.
[7]  Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: Effects and signaling cascades[J]. Acta Physiologiae Plantarum, 2014, 36: 1055-1070.
[8]  Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci USA, 2004, 101: 8827-8832.
[9]  Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiology, 2004, 136: 2556-2576.
[10]  Miao Baohe, Han Xingguo, Zhang Wenhao. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium[J]. Annals of Botany, 2010, 105: 967-973.
[11]  张志勇, 王清连, 李召虎, 等. 缺钾对棉花幼苗根系生长的影响及其生理机制[J]. 作物学报, 2009, 35: 718-723.
[12]  Zhang Zhiyong, Wang Qinglian, Li Zhaohu, et al. Effects of potassium deficiency on root growth of cotton seedlings and its physiological mechanisms[J]. Acta Agronomica Sinica, 2009, 35: 718-723.
[13]  Jung J Y, Shin R, Schachtman D P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J]. The Plant Cell, 2009, 21: 607-621.
[14]  Kim M J, Ciani S, Schachtman D P. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency[J]. Molecular Plant, 2010, 3: 420-427.
[15]  Kellermeier F, Chardon F, Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation[J]. Plant Physiology, 2013, 161: 1421-1432.
[16]  Guo H, Echer J R. The ethylene signaling pathway: New insights[J]. Current Opinion in Plant Biology, 2004, 7: 40-49.
[17]  Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: A molecular perspective[J]. Annual Review of Genetics, 1998, 32: 227-254.
[18]  Lewis D R, Negi S, Sukumar P, et al. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers[J]. Development, 2011, 138, 3485-3495.
[19]  Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana[J]. The Plant Journal, 2008, 55: 175-187.
[20]  Wang K L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks[J]. The Plant Cell, 2002, S131-S151.
[21]  Lynch J, Brown K M. Ethylene and plant responses to nutritional stress[J]. Physiologia Plantarum 1997, 100: 613-619.
[22]  Bhalerao R P, Eklof J, Ljung K, et al. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings[J]. Plant Journal, 2002, 29: 325-332.
[23]  Chhun T, Uno Y, Taketa S, et al. Saturated humidity accelerates lateral root development in rice(Oryza Sativa L.) seedlings by increasing phloem-based auxin transport[J]. Journal of Experimental Botany, 2007, 58: 1695-1704.
[24]  Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 2005, 168: 521-530.
[25]  Degl'Innocenti E, Hafsi C, Guidi L, et al. The effect of salinity on photosynthetic activity in potassium-deficient barley species[J]. Journal of Plant Physiology, 2009, 166: 1968-1981.
[26]  Gerardeauxa E, Jordan-Meilleb L, Constantinc J, et al. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.)[J]. Environmental and Experimental Botany, 2010, 67: 451-457.
[27]  Zhang Zhiyong, Tian Xiaoli, Duan Liusheng, et al. Differential responses of conventional and Bt-Transgenic cotton to potassium deficiency[J]. Journal of Plant Nutrition, 2007, 30: 659-670.
[28]  López-Bucio J. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J]. Plant Physiology, 2002, 129: 244-256.
[29]  Pierik R, Tholen D, Poorter H, et al. The Janus face of ethylene: Growth inhibition and stimulation[J]. Trends in Plant Science, 2006, 11: 176-183.
[30]  Wang Yi, Wu Weihua. Potassium transport and signaling in higher plants[J]. Annual Review of Plant Biology, 2013, 64: 451-476.
[31]  Ivanchenko M G, Muday G K, Dubrovsky J G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana[J]. The Plant Journal, 2008, 55, 335-347.
[32]  Negi S, Sukumar P, Liu X, et al. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato[J]. Plant Journal, 2010, 61: 3-15.
[33]  Stepanova A N, Yun J, Likhacheva A V, et al. Multilevel interactions between ethylene and auxin in Arabidopsis roots[J]. Plant Cell, 2007, 19: 2169-2185.
[34]  Ma Zhong, Baskin T I, Brown K M, et al. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness[J]. Plant Physiology, 2003, 131: 1381-1390.
[35]  Schaller G E. Ethylene and the regulation of plant development[J]. BMC biology, 2012, 10: 9.
[36]  Wang Feifei, Cui Xiankui, Sun Yue, et al. Ethylene signaling and regulation in plant growth and stress responses[J]. Plant Cell Reports, 2013, 32: 1099-1109.
[37]  Bradford K J, Yang S F. Xylem transport of 1-Aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants[J]. Plant Physiology, 1980, 65: 322-326.
[38]  Bradford K J, Hsiao T C, Yang S F. Inhibition of ethylene synthesis in tomato plants subjected to anaerobic root stress[J]. Plant Physiology, 1982, 70: 1503-1507.
[39]  Khan G A, Declerck M, Sorin C, et al. MicroRNAs as regulators of root development and architecture[J]. Plant Molecular Biology, 2011, 77: 47-58.
[40]  Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 11217-11221.
[41]  Zhang Hanma, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279: 407-409.
[42]  Zhang Hanma, Jennings A, Barlow P W, et al. Dual pathways for regulation of root branching by nitrate[J]. Proc Natl Acad Sci USA, 1999, 96: 6529-6534.
[43]  Liu Junqi, Vance C P. Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: A tale of two team players?[J]. Plant Signaling and Behavior, 2010, 5: 1556- 1560.
[44]  Puig J, Pauluzzi G, Guiderdoni E, et al. Regulation of shoot and root development through mutual signaling[J]. Molecular Plant, 2012, 5: 974-983.
[45]  Swarup R, Perry P, Hagenbeek D, et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation[J]. Plant Cell, 2007, 19: 2186-2196.
[46]  Tian Qiuying, Sun Pei, Zhang Wenhao. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009, 184: 918-931.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133