全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2015 

棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析

DOI: 10.11963/issn.1002-7807.201502011, PP. 176-183

Keywords: 棉花,多胺,S-腺苷蛋氨酸脱羧酶基因,非生物胁迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用电子克隆结合RT-PCR技术克隆获得陆地棉(GossypiumhirsutumL.)S ̄腺苷蛋氨酸脱羧酶(S-adenosylmethioninedecarboxylase,SAMDC)基因家族3个基因,分别命名为GhSAMDC2、GhSAMDC3和GhSAMDC4。序列分析显示,该基因cDNA包含的upstreamORF(uORF)和mainORF(mORF)为植物SAMDC基因特征ORF,其中mORF长度分别为1068bp、1110bp和1032bp,分别编码355、369和343个氨基酸。聚类分析表明,GhSAMDC2/3蛋白与可可树(Theobromacacao)SAMDC聚为一类,且GhSAMDC2与GhSAMDC3蛋白亲缘关系最近;GhSAMDC4与拟南芥AtSAMDC4聚为一类。实时荧光定量PCR分析表明,GhSAMDC2在茎中表达相对较高,随着纤维发育其表达量不断增加,在纤维发育后期其表达量达到最高;GhSAMDC2/3/4在不同的胁迫条件下表现出不同的表达模式,GhSAMDC2受低温和干旱胁迫诱导最强烈,GhSAMDC3响应盐胁迫显著,GhSAMDC4受ABA诱导强烈。上述结果为进一步研究棉花SAMDC基因功能奠定了一定基础。

References

[1]  Gill S S, Tuteja N. Polyamines and fabiotic stress tolerance in plants[J]. Plant Signal Behavior, 2010, 5(1): 26-33.
[2]  Liu J H, Nada K, Honda C, et al. Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response[J]. Journal of Experimental Botany, 2006, 57(11): 2589-2599.
[3]  Wen X P, Pang X M, Matsuda N, et al. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers[J]. Transgenic Research, 2008, 17(2): 251-263.
[4]  蔡秋华. 植物多胺的生理研究进展[J]. 福建稻麦科技, 2009, 27(1): 37-40.
[5]  Cai Qiuhua. Plant physiological polyamine research progress[J]. Fujian Science and Technology of Rice and Wheat, 2009, 27(1): 37-40.
[6]  Konstantinos A, Paschalidis K, Roubelakisangelakis. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant correlations with age cell division/expansion, and differentiation[J]. Plant Physiol, 2005, 138(1): 142-15
[7]  Alcázar R, Cuevas J C, Patron M, et al. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana[J]. Physiol Plant, 2006, 128(3): 448-455.
[8]  Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances[J]. Amino Acid, 2008, 34(1): 35-45.
[9]  路玉兰, 孙艳香, 冯雪, 等. 百脉根S ̄腺苷甲硫氨酸脱羧酶基因克隆与表达分析[J]. 华北农学报, 2013, 28(2): 78-85.
[10]  Lu Yulan, Sun Yanxiang, Feng Xue, et al. Cloning and expression analysis of S-adenosylmethionine decarboxylase gene from Lotus corniculatus L.[J]. Acta Agriculturae Boreali Sincia, 2013, 28(2): 78-85.
[11]  王小利, 刘晓霞, 王舒颖, 等. 高羊茅腺苷甲硫氨酸脱羧酶基因 FaSAMDC 的克隆与差异表达分析[J]. 草业学报, 2011, 20(4): 169-179.
[12]  Wang Xiaoli, Liu Xiaoxia, Wang Shuying, et al. Cloning and differential expressed analysis of FaSAMDC gene in Festuca arundinacea[J]. Acta Prataculturae Sinica, 2011, 20(4): 169-179.
[13]  张梅, 王然, 马春晖, 等. 杜梨S ̄腺苷甲硫氨酸脱羧酶基因的克隆与生物信息学分析[J]. 华北农学报, 2013, 28(1) : 82-87.
[14]  Zhang Mei, Wang Ran, Ma Chunhui, et al. Cloning and bio-informatics analysis of S-adenosylmethionine decarboxylase gene in Pyrus betulaefolia Bunge[J]. Acta Agriculturae Boreali Sincia, 2013, 28(1): 82-87.
[15]  陆俊杏, 卢坤, 张凯, 等. 甘蓝型油菜SAMDC3基因及其启动子的克隆与分析[J]. 基因组学与应用生物学, 2010, 29(2): 215- 224.
[16]  Lu Junxing, Lu Kun, Zhang Kai, et al. Cloning and analysis of SAMDC3 genes of their promoters from Brassica napus[J]. Genomics and Applied Biology, 2010, 29(2): 215-224.
[17]  Hao Y J, Zhang Z, Kitashiba H, et al. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses[J]. Gene, 2005, 350(1): 41-50.
[18]  刘志勇, 王孝宣, 高建昌, 等. 番茄 S ̄腺苷蛋氨酸脱羧酶基因 SlSAMDC1 的克隆与序列分析[J]. 园艺学报, 2008, 35 ( 8) : 1137-1146.
[19]  Liu Zhiyong, Wang Xiaoxuan, Gao Jianchang,et al. Cloning and sequence analysis of a S-adenosylmethionine decarboxylase gene SlSAMDC1 in tomato[J]. Acta Horticulturae Sinica, 2008, 35 (8): 1137-1146.
[20]  Franceschftti M, Hanfrey C, Scaramagli S, et al. Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames[J]. Biochemical Journal, 2001, 353: 403-409.
[21]  Li Z Y, Chen S Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress[J]. Theoretical and Applied Genetics, 2000, 100(5): 782-788.
[22]  张佳景, 丁淑丽, 邹宜静, 等. 植物腺苷甲硫氨酸脱羧酶研究进展[J]. 细胞生物学杂志, 2008, 30(1): 622-628.
[23]  Zhang Jiajing, Ding Shuli, Zou Yijing, et al. The research progress of S-adenosylmethionine decarboxylase in plant[J]. Chinese Journal of Cell Biology, 2008, 30(1): 622-628.
[24]  Waie B, Rajam M V. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene[J]. Plant Science, 2003, 164(5): 727-734.
[25]  Cheng L, Zou Y, Ding S, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress[J]. Journal of Integrative Plant Biology, 2009, 51(5): 489- 499.
[26]  Momtaz O A, Hussein E M, Fahmy E M, et al. Expression of S-adenosylmethionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90[J]. GM crops, 2010, 1(4): 257-266.
[27]  Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45(6): 712-722.
[28]  耿卫东, 李艳军, 张新宇, 等. 棉花 S ̄腺苷甲硫氨酸脱羧酶基因的克隆及低温下的表达分析[J]. 作物学报, 2012, 38(9): 1649-1656.
[29]  Geng Weidong, Li Yanjun, Zhang Xinyu, et al. Molecular cloning and expression analysis of GhSAMDC at low temperature stress in cotton(Gossypium hirsutum L.)[J]. Acta Agronomica Sinica, 2012, 38 (9): 1649-1656.
[30]  Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis[J]. Science, 1986, 234(4774): 364-368.
[31]  Rechsteiner M, Rogers S, Rote K. Protein-structure and intracellular stability[J]. Trends in Biochemical Sciences, 1987, 12(10): 390-394.
[32]  金勇丰, 边腾飞, 周萍. 高等植物基因上游可译框架 (uOFR)的分析[J]. 农业生物技术学报, 2004, 12(5): 493-499.
[33]  Jin Yongfeng, Bian Tengfei, Zhou Ping. Upstream open reading frames (uORF) analysis of plant mRNA[J]. Journal of Agriculteral Biotechnology, 2004, 12 (5): 493-499.
[34]  Hanfrey C, Franceschetti M, Mayer M J, et al. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations[J]. Journal of Biological Chemistry, 2002, 277(46): 44131-44139.
[35]  Ge C, Cui X, Wang Y, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development [J]. Cell research, 2006, 16(5): 446-456.
[36]  Urano K, Hobo T, Shinozaki K. Arabidopsis ADC genes involved in polyamine biosynthesis is essential for seed development[J]. FEBS letters, 2005, 579(6): 1557-1564.
[37]  Imai A, Matsuyama T, Hanzawa Y, et al. Spermidine synthase genes are essential for survival of Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1565-1573.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133