全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2015 

盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制

DOI: 10.11963/issn.1002-7807.201503003, PP. 208-215

Keywords: 棉花,盐胁迫,耐盐性,离子流,Na+/K+离子动态

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究棉花的耐盐机制,以中棉所49、中棉所35和中51504为材料,研究了盐胁迫对棉花幼苗的生长及K+/Na+平衡生理的影响。结果表明,150mmol·L-1NaCl处理对幼苗的生长具有明显抑制作用,降低了叶片的光合速率(Pn)、PSⅡ实际光量子产额(ΦPSII)和电子传递速率(ETR),增加了非光化学荧光猝灭系数(qN)。与中棉所49和中棉所35相比,中51504的干物质累积受盐胁迫影响最小,且保持较高的Pn、ΦPSII、ETR和qN值及较低的ETR/Pn值。盐胁迫提高了棉花组织中Na+的浓度,降低了K+的浓度;但中51504组织中保持了相对较低的Na+浓度和较高的K+浓度,维持了较高的K+/Na+比;通过非损伤微测技术(NMT)测定的离子流结果也表明,中51504的根系对Na+有较强的外排能力,而对K+有较强的保留和向地上部转运能力。能够有效地调节Na+和K+的跨膜转运进而维持K+/Na+平衡是棉花耐盐的重要生理机制之一。

References

[1]  Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual review of plant biology, 2008, 59: 651-681.
[2]  杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845. Yang Jinsong. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45: 837-845.
[3]  肖雯, 贾恢先, 蒲陆梅. 几种盐生植物抗盐生理指标的研究[J]. 西北植物学报, 2000, 20(5): 818-825. Xiao Wen, Jia Huixian, Pu Lumei. Studies on physiological index of some halophytes[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(5): 818-825.
[4]  Takahashi R, Nishio T, Ichizen N, et al. Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants[J]. Biotechnology Letters, 2007, 29: 501- 506.
[5]  Wu Honghong, Shabala L, Barry K, et al. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley[J]. Physiologia Plantarum, 2013, 149: 515-527.
[6]  Zhu Jiankang. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6: 1-5.
[7]  Wang Ruigang, Chen Shaoliang, Zhou Xiaoyang, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology, 2008, 28: 947-957.
[8]  Sun Jian, Chen Shaoliang, Dai Songxiang, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiology, 2009, 149: 41-53.
[9]  Ding Mingquan, Hou Peichen, Shen Xin, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251-269.
[10]  Teaklea N L, Bazihizinaa N, Shabalac S, et al. Ion transport in halophytes[J]. Advances in Botanical Research, 2011, 57: 151- 199.
[11]  Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133: 651-669.
[12]  Leidi E O, Saiz J F. Is salinity tolerance related to Na+ accumulation in upland cotton(Gossypium hirsutum) seedlings?[J]. Plant and Soil, 1997, 190: 67-75.
[13]  Ashraf M, Ahmad S. Influence of sodium chloride on ion accumulation, yield components and fiber characteristics in salt-tolerant and salt-sensitive lines of cotton(Gossypium hirsutum L.)[J]. Field Crops Research, 2000, 66: 115-27.
[14]  Kong Xiangqiang, Luo Zhen, Dong Hezhong, et al. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton[J]. Journal of Experimental Botany, 2012, 63(5): 2105-2116.
[15]  Li Maoying, Li Fangjun, Yue Yuesen, et al. NaCl-induced changes of ion fluxes in roots of transgenic Bacillus thuringiensis(Bt) cotton(Gossypium hirsutum L.)[J]. Journal of Integrative Agriculture, 2013, 12(3): 436-444.
[16]  陈亚华, 沈振国, 刘有良, 等. NaCl胁迫对棉花幼苗的离子平衡[J]. 棉花学报, 2001, 13(4): 225-229. Chen Yahua, Shen Zhen'guo, Liu Youliang, er al. Ion homeostasis in NaCl-stressed cotton[J]. Cotton Science, 2001, 13(4): 225- 229.
[17]  辛承松, 董合忠, 唐薇, 等. 棉花盐害与耐盐性的生理和分子机理研究进展[J]. 棉花学报, 2005, 17(5): 309-313. Xin Chensong, Dong Hezhong, Tang Wei, et al. Physiological and molecular mechanisms of salt injury and salt tolerance in cotton[J]. Cotton Science, 2005, 17(5): 309-313.
[18]  李博, 王春霞, 张志勇, 等. 适用于低钾条件下棉花苗期根冠通讯研究的三种嫁接方法[J]. 作物学报, 2009, 35(2): 363- 369. Li Bo, Wang Chunxia, Zhang Zhiyong, et al. Three types of grafting techniques available for research of root-shoot communication in cotton(Gossypium hirsutum) seedlings under low- potassium condition[J]. Acta Agronomica Sinica, 2009, 35(2): 363-369 .
[19]  Sperdouli I, Moustakas M. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit[J]. Journal of Plant Physiology, 2014, 171: 587- 593.
[20]  Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668.
[21]  Shabala S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll[J]. Plant Cell and Environment, 2000, 23: 825-837.
[22]  Chen Peng, Yan Kun, Shao Hongbo, et al. Physiological mechanisms for high salt tolerance in wild soybean(Glycine soja) from yellow river delta, china: photosynthesis, osmotic regulation, ion flux and antioxidant capacity[J]. PLOS ONE, 2013, 8(12): 1-12.
[23]  Wang Ning, Hua Hanbai, Eneji A E, et al. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton(Gossypium hirsutum)[J]. Journal of Photochemistry and Photobiology B-Biology, 2012, 110: 1-8.
[24]  Wituszyńska W, Ga?覥?諭zka K, Rusaczonek A, et al. Multivariable environmental conditions promote photosynthetic adaptation potential in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2013, 170: 548-559.
[25]  Lima-Neto M C, Lobo A K, Martins M O, et al. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt- sensitive Jatropha curcas[J]. Journal of Plant Physiology, 2014, 171(1): 23-30.
[26]  Coskun D, Britto D T, Jean Y K, et al. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice(Oryza sativa L.)[J]. PLOS ONE, 2013, 8 (2): 1-16.
[27]  Bose J, Shabala L, Pottosin I, et al. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley[J]. Plant Cell and Environment, 2014, 37: 589-600.
[28]  Li Xiaojun, Guo Chengjin, Gu Juntao, et al. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat(Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought[J]. Journal of Experimental Botany, 2014, 65(2): 683-696.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133