全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial Peptides as Infection Imaging Agents: Better Than Radiolabeled Antibiotics

DOI: 10.1155/2012/965238

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nuclear medicine imaging techniques offer whole body imaging for localization of number and site of infective foci inspite of limitation of spatial resolution. The innate human immune system contains a large member of important elements including antimicrobial peptides to combat any form of infection. However, development of antibiotics against bacteria progressed rapidly and gained popularity over antimicrobial peptides but even powerful antimicrobials failed to reduce morbidity and mortality due to emergence of mutant strains of bacteria resulting in antimicrobial resistance. Differentiation between infection and inflammation using radiolabeled compounds with nuclear medicine techniques has always been a dilemma which is still to be resolved. Starting from nonspecific tracers to specific radiolabeled tracers, the question is still unanswered. Specific radiolabeled tracers included antibiotics and antimicrobial peptides which bind directly to the bacteria for efficient localization with advanced nuclear medicine equipments. However, there are merits and demerits attributed to each. In the current paper, radiolabeled antibiotics and radiolabeled peptides for infection localization have been discussed starting with the background of primitive nonspecific tracers. Radiolabeled antimicrobial peptides have certain merits compared with labeled antibiotics which make them superior agents for localization of infective focus. 1. General Introduction Blood-derived antimicrobial proteins and peptides being part of innate immunity target the microbial membranes leading to growth arrest and, in some instants, neutralization of proinflammatory surface components like lipopolysaccharides. Different inflammatory response blood cells like neutrophils, eosinophils, macrophages, and platelets contain antimicrobial proteins and peptides which have affinity for surface lipids of microbial as opposed to eukaryotic cells. Neutrophils contain primary and secondary granules in their cytoplasm which contain antimicrobial proteins and peptides. Lactoferrin is localized in the secondary granules, which has direct microbicidal effect, presumably via membrane disruption. Activated neutrophils release bactericidal/permeability increasing protein (BPI) into inflammatory fluids where it is potentially bactericidal. Serprocidins are proteases with cytotoxic activity localized in neutrophil primary granules. Cathelicidins are also antimicrobial peptides within secondary granules of neutrophils. The defensins are a family of 4-Kd peptides with broad cytotoxic activity against bacteria,

References

[1]  O. Levy, “Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents,” Blood, vol. 96, no. 8, pp. 2664–2672, 2000.
[2]  M. R. Yeaman, A. S. Ibrahim, J. E. J. Edwards, A. S. Bayer, and M. A. Ghannoum, “Thrombin-induced rabbit platelet microcidal protein is fungicidal in vitro,” Antimicrob Agents Chemother, vol. 37, pp. 546–553, 1993.
[3]  S. S. Das, A. V. Hall, D. W. Wareham, and K. E. Britten, “Infection imaging with radiopharmaceuticals in the 21st century,” Brazilian Archives of Biology and Technology, vol. 45, pp. 25–37, 2002.
[4]  F. H. M. Corstens and J. W. M. Van Der Meer, “Nuclear medicine's role in infection and inflammation,” Lancet, vol. 354, no. 9180, pp. 765–770, 1999.
[5]  A. M. Peters, H. J. Danpure, S. Osman, et al., “Preliminary clinical experience with 99mTc-hexamethylpropylene-amineoxime for labelling leucocytes and imaging infection,” The Lancet, vol. 2, pp. 945–949, 1986.
[6]  A. M. Peters, “The utility of [99mTc]HMPAO-leukocytes for imaging infection,” Seminars in Nuclear Medicine, vol. 24, no. 2, pp. 110–127, 1994.
[7]  S. Gratz, H. J. J. M. Rennen, O. C. Boerman et al., “99mTc-HMPAO-labeled autologous versus heterologous leukocytes for imaging infection,” Journal of Nuclear Medicine, vol. 43, no. 7, pp. 918–924, 2002.
[8]  W. Becker and J. Meller, “The role of nuclear medicine in infection and inflammation,” Lancet Infectious Diseases, vol. 1, no. 5, pp. 326–333, 2001.
[9]  C. Love and C. J. Palestro, “Radionuclide imaging of infection,” Journal of Nuclear Medicine Technology, vol. 32, no. 2, pp. 47–57, 2004.
[10]  L. Filippi and O. Schillaci, “Usefulness of hybrid SPECT/CT in 99mTC-HMPAO-labeled leukocyte scintigraphy for bone and joint infections,” Journal of Nuclear Medicine, vol. 47, no. 12, pp. 1908–1913, 2006.
[11]  R. Bar-Shalom, N. Yefremov, L. Guralnik et al., “SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection,” Journal of Nuclear Medicine, vol. 47, no. 4, pp. 587–594, 2006.
[12]  N. Dumarey, D. Egrise, D. Blocklet et al., “Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients,” Journal of Nuclear Medicine, vol. 47, no. 4, pp. 625–632, 2006.
[13]  B. Fournier, X. Zhao, T. Lu, K. Drlica, and D. C. Hooper, “Selective targeting of topoisomerase IV and DNA gyrase in Stphylococcus aureus: different patterns of quinolone-induced inhibition of DNA Synthesis,” Antimicrob Agents Chemother, vol. 44, pp. 2160–2165, 2000.
[14]  Z. Yapar, M. Kibar, A. F. Yapar, E. To?rul, U. Kayasel?uk, and Y. Sarpel, “The efficacy of technetium-99m ciprofloxacin (Infecton) imaging in suspected orthopaedic infection: a comparison with sequential bone/gallium imaging,” European Journal of Nuclear Medicine, vol. 28, no. 7, pp. 822–830, 2001.
[15]  K. Sonmezoglu, M. Sonmezoglu, M. Halac et al., “Usefulness of 99mTc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy,” Journal of Nuclear Medicine, vol. 42, no. 4, pp. 567–574, 2001.
[16]  M. J. Larikka, A. K. Ahonen, O. Niemela, et al., “99mTc-ciproflaxacin (infection) imaging in the diagnosis of knee prosthesis infections,” Nuclear Medicine Communications, vol. 23, pp. 167–170, 2002.
[17]  L. Sarda, A. C. Crémieux, Y. Lebellec et al., “Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases,” Journal of Nuclear Medicine, vol. 44, no. 6, pp. 920–926, 2003.
[18]  T. Appelboom, P. Emery, L. Tant, N. Dumarey, and A. Schoutens, “Evaluation of technetium-99m-ciprofloxacin (infection) for detecting sites of inflammation in arthritis,” Rheumatology, vol. 42, no. 10, pp. 1179–1182, 2003.
[19]  M. E. Jones, N. M. Boenink, J. Verhoef, K. Kohrer, and F. J. Schmitz, “Multiple mutations conferring ciprofloxacin resistance in staphylococcus aureus demonstrate long-term stability in an antibiotic free environment,” Journal of Antimicrobial Chemotherapy, vol. 45, pp. 353–356, 2000.
[20]  M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, no. 6870, pp. 389–395, 2002.
[21]  M. M. Welling, P. H. Nibbering, A. Paulusma-Annema, P. S. Hiemstra, E. K. J. Pauwels, and W. Calame, “Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1,” Journal of Nuclear Medicine, vol. 40, no. 12, pp. 2073–2080, 1999.
[22]  P. S. Hiemstra, M. T. Van Den Barselaar, M. Roest, P. H. Nibbering, and R. Van Furth, “Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages,” Journal of Leukocyte Biology, vol. 66, no. 3, pp. 423–428, 1999.
[23]  M. M. Welling, S. Mongera, A. Lupetti et al., “Radiochemical and biological characteristics of 99mTc-UBI 29-41 for imaging of bacterial infections,” Nuclear Medicine and Biology, vol. 29, no. 4, pp. 413–422, 2002.
[24]  M. M. Welling, A. Lupetti, H. S. Balter et al., “99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections,” Journal of Nuclear Medicine, vol. 42, no. 5, pp. 788–794, 2001.
[25]  R. M. Epand and H. J. Vogel, “Diversity of antimicrobial peptides and their mechanisms of action,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 11–28, 1999.
[26]  M. Edgerton, S. E. Koshlukova, T. E. Lo, B. G. Chrzan, R. M. Straubinger, and P. A. Raj, “Candidacidal activity of salivary histatins: identification of a histatin 5-binding protein on Candida albicans,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 20438–20447, 1998.
[27]  M. S. Akhtar, J. Iqbal, M. A. Khan et al., “99mTc-labeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection,” Journal of Nuclear Medicine, vol. 45, no. 5, pp. 849–856, 2004.
[28]  M. S. Akhtar, M. E. Khan, B. Khan et al., “An imaging analysis of 99mTc-UBI (29-41) uptake in S. aureus infected thighs of rabbits on ciprofloxacin treatment,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 6, pp. 1056–1064, 2008.
[29]  M. S. Akhtar, A. Qaisar, J. Irfanullah et al., “Antimicrobial peptide 99mTc-Ubiquicidin 29-41 as human infection-imaging agent: clinical trial,” Journal of Nuclear Medicine, vol. 46, no. 4, pp. 567–573, 2005.
[30]  Y. Ito, S. Okuyama, T. Awano, K. Takahashi, and T. Sato, “Diagnostic evaluation of 67 Ga scanning of lung cancer and other diseases.,” Radiology, vol. 101, no. 2, pp. 355–362, 1971.
[31]  R. D. Neuman and J. G. McAfee, “Gallium-67 imaging in infection,” in Diagnostic Nuclear Medicine, M. P. Sandler, J. A. Patton, R. E. Coleman, A. Gottschalk, F. J. Wackers, and P. B. Hoffer, Eds., pp. 1493–1507, Williams and Wilkins, Baltimore, Md, USA, 3rd edition, 1996.
[32]  M. F. Tsan, “Mechanism of gallium-67 accumulation in inflammatory lesions,” Journal of Nuclear Medicine, vol. 26, no. 1, pp. 88–92, 1985.
[33]  R. K. Zeman and T. W. Ryerson, “The value of bowel preparation in Ga-67 citrate scanning: concise communication,” Journal of Nuclear Medicine, vol. 18, no. 9, pp. 886–889, 1977.
[34]  O. James, E. J. Wood, and S. Sherlock, “67Gallium scanning in the diagnosis of liver disease,” Gut, vol. 15, no. 5, pp. 404–410, 1974.
[35]  D. Front, O. Israel, R. Epelbaum et al., “Ga-67 SPECT before and after treatment of lymphoma,” Radiology, vol. 175, no. 2, pp. 515–519, 1990.
[36]  C. J. Palestro, “The current role of gallium imaging in infection,” Seminars in Nuclear Medicine, vol. 24, no. 2, pp. 128–141, 1994.
[37]  E. V. Staab and W. H. McCartney, “Role of Gallium 67 in inflammatory disease,” Seminars in Nuclear Medicine, vol. 8, no. 3, pp. 219–234, 1978.
[38]  M. A. Auler, S. Bagg, and L. Gordon, “The role of nuclear medicine in imaging infection,” Seminars in Roentgenology, vol. 42, no. 2, pp. 117–121, 2007.
[39]  A. J. Fischman, R. H. Rubin, J. A. White et al., “Localization of Fc and Fab fragments of nonspecific polyclonal IgG at focal sites of inflammation,” Journal of Nuclear Medicine, vol. 31, no. 7, pp. 1199–1205, 1990.
[40]  A. J. Fischman, A. J. Fucello, J. L. Pellegrino-Gensey et al., “Effect of carbohydrate modification on the localization of human polyclonal IgG at focal sites of bacterial infection,” Journal of Nuclear Medicine, vol. 33, no. 7, pp. 1378–1382, 1992.
[41]  M. W. Nijhof, W. J. G. Oyen, A. Van K?mpen, R. A. M. J. Ciaessens, J. W. M. Van Der Meer, and F. H. M. Corstens, “Evaluation of infections of the locomotor system with indium-111 -labeled human IgG scintigraphy,” Journal of Nuclear Medicine, vol. 38, no. 8, pp. 1300–1305, 1997.
[42]  J. R. Buscombe, W. J. G. Oyen, A. Grant et al., “Indium-111-labeled polyclonal human immunoglobulin: identifying focal infection in patients positive for human immunodeficiency virus,” Journal of Nuclear Medicine, vol. 34, no. 10, pp. 1621–1625, 1993.
[43]  L. Mairal, P. A. De Uma, J. Martin-Comin et al., “Simultaneous administration of 111In-human immunoglobulin and 99mTc-HMPAO labelled leucocytes in inflammatory bowel disease,” European Journal of Nuclear Medicine, vol. 22, no. 7, pp. 664–670, 1995.
[44]  W. Becker, J. Bair, T. Behr et al., “Detection of soft-tissue infections and osteomyelitis using a technetium- 99m-labeled anti-granulocyte monoclonal antibody fragment,” Journal of Nuclear Medicine, vol. 35, no. 9, pp. 1436–1443, 1994.
[45]  O. C. Boerman, G. Storm, W. J. G. Oyen et al., “Sterically stabilized liposomes labeled with Indium-111 to image focal infection,” Journal of Nuclear Medicine, vol. 36, no. 9, pp. 1639–1644, 1995.
[46]  P. Laverman, E. T. M. Dams, W. J. G. Oyen et al., “A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative,” Journal of Nuclear Medicine, vol. 40, no. 1, pp. 192–197, 1999.
[47]  E. T. M. Dams, W. J. G. Oyen, O. C. Boerman et al., “99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 622–630, 2000.
[48]  D. J. Hnatowich, F. Virzi, and M. Rusckowski, “Investigations of avidin and biotin for imaging applications,” Journal of Nuclear Medicine, vol. 28, no. 8, pp. 1294–1302, 1987.
[49]  M. Rusckowski, B. Fritz, and D. J. Hnatowich, “Localization of infection using streptavidin and biotin: an alternative to nonspecific polyclonal immunoglobulin,” Journal of Nuclear Medicine, vol. 33, no. 10, pp. 1810–1815, 1992.
[50]  A. Samuel, G. Paganelli, R. Chiesa et al., “Detection of prosthetic vascular graft infection using avidin/indium-111-biotin scintigraphy,” Journal of Nuclear Medicine, vol. 37, no. 1, pp. 55–61, 1996.
[51]  M. Rusckowski, G. Paganelli, D. J. Hnatowich et al., “Imaging osteomyelitis with streptavidin and Indium-111-labeled biotin,” Journal of Nuclear Medicine, vol. 37, no. 10, pp. 1655–1662, 1996.
[52]  C. J. Palestro and M. A. Torres, “Radionuclide imaging of nonosseous infection,” Quarterly Journal of Nuclear Medicine, vol. 43, no. 1, pp. 46–60, 1999.
[53]  E. Outwater, E. Oates, and R. C. Sarno, “Indium-111-labeled leukocyte scintigraphy: diagnosis of subperiosteal abscesses complicating osteomyelitis in a child,” Journal of Nuclear Medicine, vol. 29, no. 11, pp. 1871–1874, 1988.
[54]  F. L. Datz and D. A. Thorne, “Cause and significance of cold bone defects on Indium-111-labeled leukocyte imaging,” Journal of Nuclear Medicine, vol. 28, no. 5, pp. 820–823, 1987.
[55]  K. Uno, N. Matsui, and K. Nohira, “Indium-111 leukocyte imaging in patients with rheumatoid arthritis,” Journal of Nuclear Medicine, vol. 27, no. 3, pp. 339–344, 1986.
[56]  D. S. Schauwecker, H. M. Park, R. W. Burt, B. H. Mock, and H. N. Wellman, “Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease,” Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1651–1655, 1988.
[57]  L. M. Lamki, L. P. Kasi, and T. P. Haynie, “Localization of Indium-111 leukocytes in noninfected neoplasms,” Journal of Nuclear Medicine, vol. 29, no. 12, pp. 1921–1926, 1988.
[58]  C. J. Palestro, H. H. Mehta, M. Patel et al., “Marrow versus infection in the Charcot joint: indium-111 leukocyte and technetium-99m sulfur colloid scintigraphy,” Journal of Nuclear Medicine, vol. 39, no. 2, pp. 346–350, 1998.
[59]  W. J. G. Oyen, R. A. M. J. Claessens, J. W. M. Van der Meer, and F. H. M. Corstens, “Detection of subacute infectious foci with indium-111-labeled autologous leukocytes and indium-111-labeled human nonspecific immunoglobulin G: a prospective comparative study,” Journal of Nuclear Medicine, vol. 32, no. 10, pp. 1854–1860, 1991.
[60]  J. G. McAfee, G. Gagne, G. Subramanian, and R. F. Schneider, “The localization of indium-111-leukocytes, gallium-67-polyclonal IgG and other radioactive agents in acute focal inflammatory lesions,” Journal of Nuclear Medicine, vol. 32, no. 11, pp. 2126–2131, 1991.
[61]  C. J. Palestro, C. K. Kim, A. J. Swyer, S. Vallabhajosula, and S. J. Goldsmith, “Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy,” Journal of Nuclear Medicine, vol. 32, no. 10, pp. 1861–1865, 1991.
[62]  F. L. Datz, “Indium-111-labeled leukocytes for the detection of infection: current status,” Seminars in Nuclear Medicine, vol. 24, no. 2, pp. 92–109, 1994.
[63]  S. L. Kipper, “Radiolabelled leukocyte imaging of the abdomen,” in Nuclear Medicine Annual, L. M. Freeman, Ed., pp. 81–126, Raven Press, New York, NY, USA, 1995.
[64]  J. H. Thrall and H. A. Ziessman, “Infection and inflammation,” in Nuclear Medicine: The Requisites, J. H. Thrall, Ed., pp. 167–192, Mosby, 2nd edition, 2001.
[65]  M. E. Roddie, A. M. Peters, H. J. Danpure et al., “Inflammation: imaging with Tc-99m HMPAO-labeled leukocytes,” Radiology, vol. 166, no. 3, pp. 767–772, 1988.
[66]  M. Vorne, I. Soini, T. Lantto, and S. Paakkinen, “Technetium-99m HM-PAO-labeled leukocytes in detection of inflammatory lesions: comparison with Gallium-67 citrate,” Journal of Nuclear Medicine, vol. 30, no. 8, pp. 1332–1336, 1989.
[67]  I. Hovi, M. Taavitsainen, T. Lantto, M. Vorne, R. Paul, and K. Remes, “Technetium-99m-HMPAO-labeled leukocytes and technetium-99m-labeled human polyclonal immunoglobulin G in diagnosis of focal purulent disease,” Journal of Nuclear Medicine, vol. 34, no. 9, pp. 1428–1434, 1993.
[68]  E. H. Lantto, T. J. Lantto, and M. Vorne, “Fast diagnosis of abdominal infections and inflammations with technetium-99m-HMPAO labeled leukocytes,” Journal of Nuclear Medicine, vol. 32, no. 11, pp. 2029–2034, 1991.
[69]  E. H. Lantto, T. J. Lantto, and M. Vorne, “Fast diagnosis of abdominal infections and inflammations with technetium-99m-HMPAO labeled leukocytes,” Journal of Nuclear Medicine, vol. 32, no. 11, pp. 2029–2034, 1991.
[70]  F. Palermo, F. Boccaletto, A. Paolin et al., “Comparison of technetium-99m-MDP, technetium-99-m-WBC and technetium- 99m-HIG in musculoskeletal inflammation,” Journal of Nuclear Medicine, vol. 39, no. 3, pp. 516–521, 1998.
[71]  W. Becker, U. Borst, W. Fischbach, B. Pasurka, R. Schafer, and W. Borner, “Kinetic data of in-vivo labeled granulocytes in humans with a murine Tc-99m-labelled monoclonal antibody,” European Journal of Nuclear Medicine, vol. 15, no. 7, pp. 361–366, 1989.
[72]  W. S. Becker, A. Saptogino, and F. G. Wolf, “The single late 99Tcm granulocyte antibody scan in inflammatory diseases,” Nuclear Medicine Communications, vol. 13, no. 3, pp. 186–192, 1992.
[73]  W. Becker, J. Bair, T. Behr et al., “Detection of soft-tissue infections and osteomyelitis using a technetium- 99m-labeled anti-granulocyte monoclonal antibody fragment,” Journal of Nuclear Medicine, vol. 35, no. 9, pp. 1436–1443, 1994.
[74]  M. L. Thakur, C. S. Marcus, P. Henneman et al., “Imaging inflammatory diseases with neutrophil-specific technetium-99m- labeled monoclonal antibody anti-SSEA-1,” Journal of Nuclear Medicine, vol. 37, no. 11, pp. 1789–1795, 1996.
[75]  S. L. Kipper, E. B. Rypins, D. G. Evans, M. L. Thakur, T. D. Smith, and B. Rhodes, “Neutrophil-specific 99mTc-labeled anti-CD 15 monoclonal antibody imaging for diagnosis of equivocal appendicitis,” Journal of Nuclear Medicine, vol. 41, no. 3, pp. 449–455, 2000.
[76]  S. Gratz, T. Behr, A. Herrmann et al., “Intraindividual comparison of 99mTc-labelled anti-SSEA-1 antigranulocyte antibody and 99mTc-HMPAO labelled white blood cells for the imaging of infection,” European Journal of Nuclear Medicine, vol. 25, no. 4, pp. 386–393, 1998.
[77]  W. Becker, D. M. Goldenberg, and F. Wolf, “The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions,” Seminars in Nuclear Medicine, vol. 24, no. 2, pp. 142–153, 1994.
[78]  A. J. Fischman, M. C. Pike, D. Kroon et al., “Imaging focal sites of bacterial infection in rats with indium-111- labeled chemotactic peptide analogs,” Journal of Nuclear Medicine, vol. 32, no. 3, pp. 483–491, 1991.
[79]  J. W. Babich, W. Graham, S. A. Barrow et al., “Technetium-99m-labeled chemotactic peptides: comparison with Indium-111- labeled white blood cells for localizing acute bacterial infection in the rabbit,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2176–2181, 1993.
[80]  A. J. Fischman, D. Rauh, H. Solomon et al., “In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2130–2134, 1993.
[81]  J. W. Babich, Q. Dong, W. Graham, et al., “A novel high affinity chemotactic peptide antagonist for infection imaging,” Journal of Nuclear Medicine, vol. 38: 268, 1997.
[82]  A. D. Luster, “Mechanisms of disease: chemokines-chemotactic cytokines that mediate inflammation,” New England Journal of Medicine, vol. 338, no. 7, pp. 436–445, 1998.
[83]  C. J. Van der Laken, O. C. Boerman, W. J. G. Oyen et al., “Specific targeting of infectious foci with radioiodinated human recombinant interleukin-1 in an experimental model,” European Journal of Nuclear Medicine, vol. 22, no. 11, pp. 1249–1255, 1995.
[84]  C. J. vanderLaken, O. C. Boerman, W. J. G. Oyen, et al., “Comparison of radiolabeled human recombinant interleukin-1 with its receptor antagonist in a model of infection,” European Journal of Nuclear Medicine, vol. 22: 916, 1995.
[85]  A. Signore, M. Chianelli, A. Annovazzi et al., “123I-Interleukin-2 scintigraphy for in vivo assessment of intestinal mononuclear cell infiltration in Crohn's disease,” Journal of Nuclear Medicine, vol. 41, no. 2, pp. 242–249, 2000.
[86]  A. Signore, M. Chianelli, A. Annovazzi et al., “Imaging active lymphocytic infiltration in coeliac disease with iodine- 123-interleukin-2 and the response to diet,” European Journal of Nuclear Medicine, vol. 27, no. 1, pp. 18–24, 2000.
[87]  M. D. Gross, B. Shapiro, R. S. Skinner, P. Shreve, L. M. Fig, and R. V. Hay, “Scintigraphy of osteomyelitis in man with human recombinant interleukin-8,” Journal of Nuclear Medicine, vol. 37: 25, 1996.
[88]  R. V. Hay, R. S. Skinner, O. C. Newman et al., “Scintigraphy of acute inflammatory lesions in rats with radliolabelled recombinant human interleukin-8,” Nuclear Medicine Communications, vol. 18, no. 4, pp. 367–378, 1997.
[89]  C. J. Van Der Laken, O. C. Boerman, W. J. G. Oyen, M. T. P. Van De Ven, J. W. M. Van Der Meer, and F. H. M. Corstens, “Radiolabeled interleukin-8: specific scintigraphic detection of infection within a few hours,” Journal of Nuclear Medicine, vol. 41, no. 3, pp. 463–469, 2000.
[90]  H. J. J. M. Rennen, O. C. Boernan, W. J. G. Oyen, J. W. M. Van der Meer, and F. H. M. Corstens, “Specific and rapid scintigraphic detection of infection with 99mTc-labeled interleukin-8,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 117–123, 2001.
[91]  S. Gratz, H. J. J. M. Rennen, O. C. Boerman, W. J. G. Oyen, and F. H. M. Corstens, “Rapid imaging of experimental colitis with 99mTc-interleukin-8 in rabbits,” Journal of Nuclear Medicine, vol. 42, no. 6, pp. 917–923, 2001.
[92]  B. R. Moyer, S. Vallabhajosula, J. Lister-James et al., “Technetium-99m-White Blood Cell-Specific Imaging Agent Developed from Platelet Factor 4 to Detect Infection,” Journal of Nuclear Medicine, vol. 37, no. 4–6, pp. 673–679, 1996.
[93]  C. J. Palestro, M. B. Tomas, K. K. Bhargava, et al., “Tc-99m P483H for imaging infection: phase 2 multicenter trial results,” Journal of Nuclear Medicine, vol. 40:15, 1999.
[94]  G. I. Bell, C. F. Burant, J. Takeda, and G. W. Gould, “Structure and function of mammalian facilitative sugar transporters,” Journal of Biological Chemistry, vol. 268, no. 26, pp. 19161–19164, 1993.
[95]  E. K. J. Pauwels, M. J. Ribeiro, J. H. M. B. Stoot, V. R. McCready, M. Bourguignon, and B. Mazière, “FDG accumulation and tumor biology,” Nuclear Medicine and Biology, vol. 25, no. 4, pp. 317–322, 1998.
[96]  H. Zhuang and A. Alavi, “18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation,” Seminars in Nuclear Medicine, vol. 32, no. 1, pp. 47–59, 2002.
[97]  J. Y. Paik, K. H. Lee, S. C. Yearn, Y. Choi, and B. T. Kim, “Augmented 18F-FDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C,” Journal of Nuclear Medicine, vol. 45, no. 1, pp. 124–128, 2004.
[98]  P. D. Shreve, Y. Anzai, and R. L. Wahl, “Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants,” Radiographics, vol. 19, no. 1, pp. 61–77, 1999.
[99]  T. Nakahara, H. Fujii, M. Ide, et al., “FDG uptake in the morphologically normal thymus: comparison of FDG position emission tomography and CT,” British Journal of Radiology, vol. 74, pp. 821–824, 2001.
[100]  C. Love, M. B. Tomas, G. G. Tronco, and C. J. Palestro, “FDG PET of infection and inflammation,” Radiographics, vol. 25, no. 5, pp. 1357–1368, 2005.
[101]  A. Guhlmann, D. Brecht-Krauss, G. Suger et al., “Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis,” Journal of Nuclear Medicine, vol. 39, no. 12, pp. 2145–2152, 1998.
[102]  Y. Sugawara, D. K. Braun, P. V. Kison, J. E. Russo, K. R. Zasadny, and R. L. Wahl, “Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results,” European Journal of Nuclear Medicine, vol. 25, no. 9, pp. 1238–1243, 1998.
[103]  R. F. Yen, Y. C. Chen, Y. W. Wu, M. H. Pan, and S. C. Chang, “Using 18-fluoro-2-deoxyglucose position emission tomography in detecting infectious endocarditis/endoarteritis: a preliminary report,” Academic Radiology, vol. 11, pp. 316–321, 2004.
[104]  A. Guhlmann, D. Brecht-Krauss, G. Suger et al., “Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings,” Radiology, vol. 206, no. 3, pp. 749–754, 1998.
[105]  T. K?licke, A. Schmitz, J. H. Risse et al., “Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases,” European Journal of Nuclear Medicine, vol. 27, no. 5, pp. 524–528, 2000.
[106]  K. D. M. Stumpe, H. Dazzi, A. Schaffner, and G. K. Von Schulthess, “Infection imaging using whole-body FDG-PET,” European Journal of Nuclear Medicine, vol. 27, no. 7, pp. 822–832, 2000.
[107]  M. Schiesser, K. D. M. Stumpe, O. Trentz, T. Kossmann, and G. K. Von Schulthess, “Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results,” Radiology, vol. 226, no. 2, pp. 391–398, 2003.
[108]  C. Love and C. J. Palestro, “18F-FDG and 67Ga-SPECT imaging in suspected vertebral osteomyelitis: an intraindividual comparison,” Journal of Nuclear Medicine, vol. 45, supplement: 148, 2003.
[109]  S. Yamada, K. Kubota, R. Kubota, T. Ido, and N. Tamahashi, “High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue,” Journal of Nuclear Medicine, vol. 36, no. 7, pp. 1301–1306, 1995.
[110]  Z. Keidar, D. Militianu, E. Melamed, R. Bar-Shalom, and O. Israel, “The diabetic foot: initial experience with 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 46, no. 3, pp. 444–449, 2005.
[111]  A. Kjaer, A. M. Lebech, A. Eigtved, and L. H?jgaard, “Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 5, pp. 622–626, 2004.
[112]  D. C. Hooper, J. S. Wolfson, E. Y. Ng, and M. N. Swartz, “Mechanisms of action of and resistance to ciprofloxacin,” American Journal of Medicine, vol. 82, no. 4, pp. 12–20, 1987.
[113]  S. Vinjamuri, A. V. Hall, K. K. Solanki et al., “Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection,” Lancet, vol. 347, no. 8996, pp. 233–235, 1996.
[114]  A. V. Hall, K. K. Solanki, S. Vinjamuri, et al., “Evaluation of the efficacy of 99mTc-Infecton: a novel agent for detecting sites of infection,” Journal of Clinical Pathology, vol. 51, pp. 215–219, 1996.
[115]  J. L. Martinez, A. Alonso, J. M. Gonez-Gomez, and F. Baquero, “Quinolone resistance by mutations in chromosomal gyrase genes,” Journal of Antimicrobial Chemotherapy, vol. 42, pp. 683–671, 1998.
[116]  F. De Winter, C. Van de Wiele, F. Dumont et al., “Biodistribution and dosimetry of 99mTc-ciprofloxacin, a promising agent for the diagnosis of bacterial infection,” European Journal of Nuclear Medicine, vol. 28, no. 5, pp. 570–574, 2001.
[117]  K. E. Britton, S. Vinjamuri, A. V. Hall et al., “Clinical evaluation of technetium-99m infecton for the localisation of bacterial infection,” European Journal of Nuclear Medicine, vol. 24, no. 5, pp. 553–556, 1997.
[118]  K. E. Britton, D. W. Wareham, S. S. Das, et al., “Imaging bacterial infection with 99mTc-Ciprofloxacin (infecton),” Journal of Clinical Pathology, vol. 55, pp. 817–823, 2002.
[119]  A. K. Singh, J. Verma, A. Bhatnagar, and A. Ali, “99mTc-labelled sparfloxacin: a specific infection imaging agent,” World Journal of Nuclear Medicine, vol. 1, pp. 103–109, 2003.
[120]  R. H. Siaens, H. J. Rennen, O. C. Boerman, R. Dierckx, and G. Slegers, “Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin,” Journal of Nuclear Medicine, vol. 45, no. 12, pp. 2088–2094, 2004.
[121]  V. Gomes Barreto, F. Iglesias, M. Roca, F. Tabau, and J. Martin-Comin, “Labelling of cefizoxime with 99mTc,” Revista Espa?ola de Medicina Nuclear, vol. 19, pp. 479–483, 2000.
[122]  J. Verma, A. k. Singh, A. Bhatnagar, et al., “Radio-labeling of Ethambutol with technetium-99m and its evaluation for detection of tuberculosis,” World Journal of Nuclear Medicine, vol. 4, pp. 35–46, 2005.
[123]  A. K. Singh, J. Verma, A. Bhatnagar, S. Sen, and M. Bose, “Tc-99m isoniazid: a specific agent for diagnosis of tuberculosis,” World Journal of Nuclear Medicine, vol. 2, pp. 292–305, 2003.
[124]  A. Lupetti, M. M. Welling, U. Mazzi, P. H. Nibbering, and E. K. Pauwels, “Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections,” European Journal of Nuclear Medicine, vol. 29, no. 5, pp. 674–679, 2002.
[125]  A. Lupetti, M. M. Welling, E. K. J. Pauwels, and P. H. Nibbering, “Radiolabelled antimicrobial peptides for infection detection,” Lancet Infectious Diseases, vol. 3, no. 4, pp. 223–229, 2003.
[126]  A. J. Fischman, J. W. Babich, and H. W. Strauss, “A ticket to ride: peptide radiopharmaceuticals,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2253–2263, 1993.
[127]  D. Blok, R. I. J. Feitsma, P. Vermeij, and E. J. K. Pauwels, “Peptide radiopharmaceuticals in nuclear medicine,” European Journal of Nuclear Medicine, vol. 26, no. 11, pp. 1511–1519, 1999.
[128]  P. H. Nibbering, M. M. Welling, P. J. Van Den Broek, K. E. Van Wyngaarden, E. K. J. Pauwels, and W. Calame, “Radiolabelled antimicrobial peptides for imaging of infections: a review,” Nuclear Medicine Communications, vol. 19, no. 12, pp. 1117–1121, 1998.
[129]  R. M. Epand and H. J. Vogel, “Diversity of antimicrobial peptides and their mechanisms of action,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 11–28, 1999.
[130]  A. Lupetti, P. H. Nibbering, M. M. Welling, and E. K. J. Pauwels, “Radiopharmaceuticals: new antimicrobial agents,” Trends in Biotechnology, vol. 21, no. 2, pp. 70–73, 2003.
[131]  S. M. Okarvi, “Recent developments in 99Tcm-labelled peptide-based radiopharmaceuticals: an overview,” Nuclear Medicine Communications, vol. 20, no. 12, pp. 1093–1112, 1999.
[132]  E. K. J. Pauwels, M. M. Welling, R. I. J. Feitsma, D. E. Atsma, and W. Nieuwenhuizen, “The labeling of proteins and LDL with 99mTc: a new direct method employing KBH4 and stannous chloride,” Nuclear Medicine and Biology, vol. 20, no. 7, pp. 825–833, 1993.
[133]  M. M. Welling, A. Paulusma-Annema, H. S. Balter, E. K. J. Pauwels, and P. H. Nibbering, “Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations,” European Journal of Nuclear Medicine, vol. 27, no. 3, pp. 292–301, 2000.
[134]  M. M. Welling, P. S. Hiemstra, M. T. Van Den Barselaar et al., “Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation,” Journal of Clinical Investigation, vol. 102, no. 8, pp. 1583–1590, 1998.
[135]  M. M. Welling, P. H. Nibbering, A. Paulusma-Annema, P. S. Hiemstra, E. K. J. Pauwels, and W. Calame, “Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1,” Journal of Nuclear Medicine, vol. 40, no. 12, pp. 2073–2080, 1999.
[136]  P. H. Nibbering, M. M. Welling, A. Paulusma-Annema, M. T. vandenBarselaar, and E. K. J. Pauwels, “Monitoring the efficacy of antibacterial treatments of infections with Tc-99m labeled antimicrobial peptides,” Nuclear Medicine Communications, vol. 21, pp. 575–576, 2000.
[137]  P. S. Hiemstra, M. T. Van Den Barselaar, M. Roest, P. H. Nibbering, and R. Van Furth, “Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages,” Journal of Leukocyte Biology, vol. 66, no. 3, pp. 423–428, 1999.
[138]  G. Ferro-Flores, C. Arteaga De Murphy, M. Pedraza-López et al., “In vitro and in vivo assessment of 99mTc-UBI specificity for bacteria,” Nuclear Medicine and Biology, vol. 30, no. 6, pp. 597–603, 2003.
[139]  D. Salber, J. Gunawan, K.-J. Langen et al., “Comparison of 99mTc-and 18F-ubiquicidin autoradiography to anti-staphylococcus aureus immunoflorescence in rat muscle abscesses,” Journal of Nuclear Medicine, vol. 49, pp. 995–999, 2008.
[140]  L. Sarda-Mantel, A. Saleh-Mghir, M. M. Welling et al., “Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 8, pp. 1302–1309, 2007.
[141]  C. P. J. M. Brouwer, F. F. A. Y. Gemmel, and M. M. Welling, “Evaluation of99mTc-UBI 29-41 scintigraphy for specific detection of experimental multidrug-resistant Staphylococcus aureus bacterial endocarditis,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 54, no. 4, pp. 442–450, 2010.
[142]  M. M. Welling, A. Lupetti, H. S. Balter et al., “99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections,” Journal of Nuclear Medicine, vol. 42, no. 5, pp. 788–794, 2001.
[143]  A. Lupetti, M. M. Welling, U. Mazzi, P. H. Nibbering, and E. K. Pauwels, “Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections,” European Journal of Nuclear Medicine, vol. 29, no. 5, pp. 674–679, 2002.
[144]  P. H. Nibbering, M. M. Welling, A. Paulusma-Annema, C. P. J. M. Brouwer, A. Lupetti, and E. K. J. Pauwels, “99mTc-labeled UBI 29–41 peptide for monitoring the efficacy of antimicrobial agents in mice infected with staphylococcus aureus,” Journal of Nuclear Medicine, vol. 45, pp. 321–326, 2004.
[145]  L. Meléndez-Alafort, J. Rodríguez-Cortés, G. Ferro-Flores et al., “Biokinetics of 99mTc-UBI 29-41 in humans,” Nuclear Medicine and Biology, vol. 31, no. 3, pp. 373–379, 2004.
[146]  E. Vallejo, I. Martinz, A. Tejero, S. Hermandez, et al., “Clinical utility of 99mTc-labeled ubiquicidin 29-41 antimicrobial peptide for sctigraphic detection of mediastinitis after cardiac surgery,” Archives of Medical Research, vol. 39, no. 8, pp. 768–774, 2008.
[147]  J. Supulveda-Mendez, C. A. de Murphy, J. C. Rojas-Bautista, and M. Pedraza-Lopez, “Specificity of 99m-Tc-UBI for detecting foci in patients with fever in study,” Nuclear Medicine Communications, vol. 31, no. 10, pp. 889–895, 2010.
[148]  C. Dillmann-Arroyo, R. Cantu-Leal, H. Camp-Nunez, C. Lopez-Carazosc, et al., “Application of the ubiquicidin 29-41 scan in the diagnosis of pyogenic vertebral osteomyelitis,” Acta Ortopédica Mexicana, vol. 25, no. 1, pp. 27–31, 2011.
[149]  M. Assadi, K. Vahdat, I. Nabipour, M. R. Sehhat, F. Hadanvand, et al., “Diagnostic value of 99mTc-ubiquicidin scintigraphy for osteomyelitis and comparison with 99mTc-methylene diphosphonate scintigraphy and magnetic resonance imaging,” Nuclear Medicine Communications, vol. 32, no. 8, pp. 716–723, 2011.
[150]  B. Nazari, Z. Azizmohammadi, M. Rajaei et al., “Role of 99mTc-ubiquicidin 29-41 scintigraphy to monitor antibiotic therapy in patients with orthopaedic infection: a preliminary study,” Nuclear Medicine Communications, vol. 32, no. 8, pp. 745–751, 2011.
[151]  R. E. Bishop, H. S. Gibbons, T. Guina, M. S. Trent, S. I. Miller, and C. R. H. Raetz, “Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria,” EMBO Journal, vol. 19, no. 19, pp. 5071–5080, 2000.
[152]  A. Peschel, R. W. Jack, M. Otto et al., “Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine,” Journal of Experimental Medicine, vol. 193, no. 9, pp. 1067–1076, 2001.
[153]  A. Peschel, “How do bacteria resist human antimicrobial peptides?” Trends in Microbiology, vol. 10, no. 4, pp. 179–186, 2002.
[154]  M. H. Limoncu, S. Ermertcan, C. B. Cetin, G. Cosar, and G. Dinc, “Emergence of phenotypic resistance to ciprofloxacin and levofloxacin in methicillin resistant and methicillin-sensitive staphylococcus aureus strains,” International Journal of Antimicrobial Agents, vol. 5, pp. 420–424, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413