全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Platelet-Rich Plasma Peptides: Key for Regeneration

DOI: 10.1155/2012/532519

Full-Text   Cite this paper   Add to My Lib

Abstract:

Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine. 1. Introduction Platelets are nonnuclear cellular fragments derived from megakaryocytes in the bone marrow; they are specialized secretory elements that release the contents of their intracellular granules in response to activation. They were discovered by Bizzozero in the 19th century [1] and after Wright observed that megakaryocytes are platelet precursors [2]. Actually we know that platelets synthesize proteins and that pattern of peptides synthesis changes in response to cellular activation [3]. Platelets contain a great variety of proteins molecules, among which are the high presence of signaling, membrane proteins, protein processing, cytoskeleton regulatory proteins, cytokines, and other bioactive peptides that initiate and regulate basic aspects of wound healing [3]. It is known, through efforts such as the platelet proteome project, that more than 300 proteins are released by human platelets in response to thrombin activation [4]. Proteome platelet includes 190 membrane-associated and 262 phosphorylated proteins, which were identified via independent proteomic and phospho proteomic profiling [5]. When platelets fall precipitously below critical levels (usually under 10,000 to 20,000 per cubic millimeter), molecular disassembly opens the zippers formed by adjacent intercellular endothelial junctions, causing extravasation of erythrocytes into the surrounding tissues. In addition to their well-known function in hemostasis, platelets also release substances that promote tissue repair, angiogenesis, and inflammation [6]. Furthermore, they induce the migration and adherence of bone-marrow-derived cells to sites of angiogenesis; platelets also induce differentiation of endothelial-cell

References

[1]  G. Bizzozero, “Su di un nuovo elemento morfologico del sangue dei mammiferi e della sua importanza nella trombosi e nella coagulazione,” L’Osservatore, vol. 17, pp. 785–787, 1881.
[2]  J. H. Wright, “The origin and nature of blood plates,” Boston Medical Surgical Journal, vol. 154, pp. 643–645, 1906.
[3]  A. S. Weyrich, H. Schwertz, L. W. Kraiss, and G. A. Zimmerman, “Protein synthesis by platelets: historical and new perspectives,” Journal of Thrombosis and Haemostasis, vol. 7, no. 2, pp. 241–246, 2009.
[4]  J. A. Coppinger, G. Cagney, S. Toomey et al., “Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions,” Blood, vol. 103, no. 6, pp. 2096–2104, 2004.
[5]  A. H. Qureshi, V. Chaoji, D. Maiguel et al., “Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling,” PLoS One, vol. 4, no. 10, Article ID e7627, 2009.
[6]  R. L. Nachman and S. Rafii, “Platelets, petechiae, and preservation of the vascular wall,” The New England Journal of Medicine, vol. 359, no. 12, pp. 1261–1270, 2008.
[7]  K. Jurk and B. E. Kehrel, “Platelets: physiology and biochemistry,” Semin Thromb Hemost, vol. 31, pp. 381–392, 2005.
[8]  A. Mishra, J. Velotta, T. J. Brinton et al., “RevaTen platelet-rich plasma improves cardiac function after myocardial injury,” Cardiovascular Revascularization Medicine, vol. 12, no. 3, pp. 158–163, 2011.
[9]  P. Borzini and L. Mazzucco, “Platelet-rich plasma (PRP) and platelet derivatives for topical therapy. What is true from the biological view point?” ISBT Science Series, vol. 2, pp. 272–281, 2007.
[10]  B. Cole and S. Seroyer, “Platelet-rich plasma: where are we now and where are we going?” Sports Health, vol. 2, no. 3, pp. 203–210, 2010.
[11]  J. P. Fréchette, I. Martineau, and G. Gagnon, “Platelet-rich plasmas: growth factor content and roles in wound healing,” Journal of Dental Research, vol. 84, no. 5, pp. 434–439, 2005.
[12]  A. Kocaoemer, S. Kern, H. Klüter, and K. Bieback, “Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue,” Stem Cells, vol. 25, no. 5, pp. 1270–1278, 2007.
[13]  N. Borregaard and J. B. Cowland, “Granules of the human neutrophilic polymorphonuclear leukocyte,” Blood, vol. 89, no. 10, pp. 3503–3521, 1997.
[14]  F. Rendu and B. Brohard-Bohn, “The platelet release reaction: granules' constituents, secretion and functions,” Platelets, vol. 12, no. 5, pp. 261–273, 2001.
[15]  E. Anitua, I. Andia, B. Ardanza, P. Nurden, and A. T. Nurden, “Autologous platelets as a source of proteins for healing and tissue regeneration,” Thrombosis and Haemostasis, vol. 91, no. 1, pp. 4–15, 2004.
[16]  A. Garcia, N. Zitzmann, and S. P. Watson, “Analyzing the platelet proteome,” Seminars in Thrombosis and Hemostasis, vol. 30, no. 4, pp. 485–489, 2004.
[17]  A. I. Mininkova, “Platelet structure and functions (a review of literature). Part 1,” Klinichescheskaya Laboratornaya Diagnostika, no. 11, pp. 21–26, 2010.
[18]  A. I. Mininkova, “Investigation of platelets by the flow cytofluorometric technique (a review of literature). Part 2,” Klinichescheskaya Laboratornaya Diagnostika, no. 4, pp. 25–30, 2011.
[19]  O. Mei-Dan, L. Laver, M. Nyska, and G. Mann, “Platelet rich plasma—a new biotechnology for treatment of sports injuries,” Harefuah, vol. 150, no. 5, pp. 453–457, 2011.
[20]  A. T. Nurden, “Platelets, inflammation and tissue regeneration,” Thrombosis and Haemostasis, vol. 105 suppl 1, pp. S13–S33, 2011.
[21]  R. E. Marx, E. R. Carlson, R. M. Eichstaedt, S. R. Schimmele, J. E. Strauss, and K. R. Georgeff, “Platelet-rich plasma: growth factor enhancement for bone grafts,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 85, no. 6, pp. 638–646, 1998.
[22]  L. Brass, “Understanding and evaluating platelet function,” Hematology / the Education Program of the American Society of Hematology Education Program, vol. 2010, pp. 387–396, 2010.
[23]  Y. Liu, A. Kalen, O. Risto, and O. Wahlstr?m, “Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent,” Wound Repair and Regeneration, vol. 10, no. 5, pp. 336–340, 2002.
[24]  C. A. Carter, D. G. Jolly, C. E. Worden, D. G. Hendren, and C. J. M. Kane, “Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing,” Experimental and Molecular Pathology, vol. 74, no. 3, pp. 244–255, 2003.
[25]  B. L. Eppley, W. S. Pietrzak, and M. Blanton, “Platelet-rich plasma: a review of biology and applications in plastic surgery,” Plastic and Reconstructive Surgery, vol. 118, no. 6, pp. 147e–159e, 2006.
[26]  K. M. Lacci and A. Dardik, “Platelet-rich plasma: support for its use in wound healing,” Yale Journal of Biology and Medicine, vol. 83, no. 1, pp. 1–9, 2010.
[27]  T. E. Foster, B. L. Puskas, B. R. Mandelbaum, M. B. Gerhardt, and S. A. Rodeo, “Platelet-rich plasma: from basic science to clinical applications,” American Journal of Sports Medicine, vol. 37, no. 11, pp. 2259–2272, 2009.
[28]  S. Werner and R. Grose, “Regulation of wound healing by growth factors and cytokines,” Physiological Reviews, vol. 83, no. 3, pp. 835–870, 2003.
[29]  R. E. Marx, “Platelet-rich plasma (PRP): what is PRP and what is not PRP?” Implant Dentistry, vol. 10, no. 4, pp. 225–228, 2001.
[30]  B. L. Eppley, J. E. Woodell, and J. Higgins, “Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing,” Plastic and Reconstructive Surgery, vol. 114, no. 6, pp. 1502–1508, 2004.
[31]  S. J. Froum, S. S. Wallace, D. P. Tarnow, and S. C. Cho, “Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: three bilateral case reports,” International Journal of Periodontics and Restorative Dentistry, vol. 22, no. 1, pp. 45–53, 2002.
[32]  A. R. Sanchez, P. J. Sheridan, and L. I. Kupp, “Is platelet-rich plasma the perfect enhancement factor? A current review,” International Journal of Oral and Maxillofacial Implants, vol. 18, no. 1, pp. 93–103, 2003.
[33]  T. F. Tozum and B. Demiralp, “Platelet-rich plasma: a promising innovation in dentistry,” Journal Canadian Dental Association, vol. 69, no. 10, p. 664, 2003.
[34]  E. G. Freymiller and T. L. Aghaloo, “Platelet-rich plasma: ready or not?” Journal of Oral and Maxillofacial Surgery, vol. 62, no. 4, pp. 484–488, 2004.
[35]  M. I. Furman, L. Liu, S. E. Benoit, R. C. Becker, M. R. Barnard, and A. D. Michelson, “The cleaved peptide of the thrombin receptor is a strong platelet agonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3082–3087, 1998.
[36]  J. P. Maloney, C. C. Silliman, D. R. Ambruso, J. Wang, R. M. Tuder, and N. F. Voelkel, “In vitro release of vascular endothelial growth factor during platelet aggregation,” American Journal of Physiology, vol. 275, no. 3, pp. H1054–H1061, 1998.
[37]  N. T. Bennett and G. S. Schultz, “Growth factors and wound healing: biochemical properties of growth factors and their receptors,” American Journal of Surgery, vol. 165, no. 6, pp. 728–737, 1993.
[38]  D. R. Knighton, T. K. Hunt, K. K. Thakral, and W. H. Goodson, “Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis,” Annals of Surgery, vol. 196, no. 4, pp. 379–388, 1982.
[39]  S. Cohen, “Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new born animal,” Journal of Biological Chemistry, vol. 237, pp. 1555–1562, 1962.
[40]  G. L. Brown, L. B. Nancy, J. Griffen et al., “Enhancement of wound healing by topical treatment with epidermal growth factor,” The New England Journal of Medicine, vol. 321, no. 2, pp. 76–79, 1989.
[41]  G. Hosgood, “Wound healing: the role of platelet-derived growth factor and transforming growth factor beta,” Veterinary Surgery, vol. 22, no. 6, pp. 490–495, 1993.
[42]  H. N. Antoniades and L. T. Williams, “Human platelet-derived growth factor: structure and function,” Federation Proceedings, vol. 42, no. 9, pp. 2630–2634, 1983.
[43]  J. Floege, F. Eitner, and C. E. Alpers, “A new look at platelet-derived growth factor in renal disease,” Journal of the American Society of Nephrology, vol. 19, no. 1, pp. 12–23, 2008.
[44]  O. Wahlstr?m, C. Linder, A. Kalén, and P. Magnusson, “Acidic preparations of platelet concentrates release bone morphogenetic protein-2,” Acta Orthopaedica, vol. 79, no. 3, pp. 433–437, 2008.
[45]  C. Betsholtz, “Role of platelet-derived growth factors in mouse development,” International Journal of Development Biology, vol. 39, no. 5, pp. 817–825, 1995.
[46]  S. C. Bir, J. Esaki, A. Marui et al., “Therapeutic treatment with sustained-release platelet-rich plasma restores blood perfusion by augmenting ischemia-induced angiogenesis and arteriogenesis in diabetic mice,” Journal of Vascular Research, vol. 48, no. 3, pp. 195–205, 2011.
[47]  S. C. Bir, J. Esaki, A. Marui et al., “Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse,” Journal of Vascular Surgery, vol. 50, no. 4, pp. 870–879, 2009.
[48]  A. Mishra and T. Pavelko, “Treatment of chronic elbow tendinosis with buffered platelet-rich plasma,” American Journal of Sports Medicine, vol. 34, no. 11, pp. 1774–1778, 2006.
[49]  G. Weibrich, W. K. Kleis, G. Hafner, and W. E. Hitzler, “Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count,” Journal of Craniomaxillofacial Surgery, vol. 30, no. 2, pp. 97–102, 2002.
[50]  M. M. Rechler and S. P. Nissley, “Insulin-like growth factors,” in Handbook of Experimental Pharm: Peptide Growth Factors and Their Receptors, M. B. Sporn and A. B. Roberts, Eds., vol. 96, pp. 263–367, Springer, Berlin, Germany, 1990.
[51]  G. F. Pierce, T. A. Mustoe, J. Lingelbach, V. R. Masakowski, P. Gramates, and T. F. Deuel, “Transforming growth factor β reverses the glucocorticoid-induced wound healing deficit in rats. Possible regulation in macrophages by platelet-derived growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2229–2233, 1989.
[52]  J. M. Pérez-Rojas, C. Cruz, P. García-López et al., “Renoprotection byα-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity,” Free Radical Research, vol. 43, no. 11, pp. 1122–1132, 2009.
[53]  M. G. Goldner, “The fate of the second leg in the diabetic amputee,” Diabetes, vol. 9, pp. 100–103, 1960.
[54]  J. Yu, C. Ustach, and H. R. Kim, “Platelet-derived growth factor signaling and human cancer,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 49–59, 2003.
[55]  S. P. Bennett, G. D. Griffiths, A. M. Schor, G. P. Leese, and S. L. Schor, “Growth factors in the treatment of diabetic foot ulcers,” British Journal of Surgery, vol. 90, no. 2, pp. 133–146, 2003.
[56]  E. M. Spencer, A. Tokunaga, and T. K. Hunt, “Insulin-like growth factor binding protein-3 is present in the α-granules of platelets,” Endocrinology, vol. 132, no. 3, pp. 996–1001, 1993.
[57]  T. McCarrel and L. Fortier, “Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression,” Journal of Orthopaedic Research, vol. 27, no. 8, pp. 1033–1042, 2009.
[58]  H. F. Dvorak, “Discovery of vascular permeability factor (VPF),” Experimental Cell Research, vol. 312, no. 5, pp. 522–526, 2006.
[59]  T. Tammela, B. Enholm, K. Alitalo, and K. Paavonen, “The biology of vascular endothelial growth factors,” Cardiovascular Research, vol. 65, no. 3, pp. 550–563, 2005.
[60]  S. Lee, T. T. Chen, C. L. Barber et al., “Autocrine VEGF signaling is required for vascular homeostasis,” Cell, vol. 130, no. 4, pp. 691–703, 2007.
[61]  P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996.
[62]  B. Olofsson, M. Jeltsch, U. Eriksson, and K. Alitalo, “Current biology of VEGF-B and VEGF-C,” Current Opinion in Biotechnology, vol. 10, no. 6, pp. 528–535, 1999.
[63]  T. A. Partanen, J. Arola, A. Saaristo et al., “VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues,” FASEB Journal, vol. 14, no. 13, pp. 2087–2096, 2000.
[64]  M. Klagsbrun, S. Takashima, and R. Mamluk, “The role of neuropilin in vascular and tumor biology,” Advances in Experimental Medicine and Biology, vol. 515, pp. 33–48, 2002.
[65]  R. J. Levine, S. E. Maynard, C. Qian et al., “Circulating angiogenic factors and the risk of preeclampsia,” The New England Journal of Medicine, vol. 350, no. 7, pp. 672–683, 2004.
[66]  J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nature Reviews Drug Discovery, vol. 6, no. 4, pp. 273–286, 2007.
[67]  R. M?hle, D. Green, M. A. Moore, R. L. Nachman, and S. Rafii, “Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 2, pp. 663–668, 1997.
[68]  M. Lucerna, A. Zernecke, R. de Nooijer et al., “Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment,” Blood, vol. 109, no. 1, pp. 122–129, 2007.
[69]  D. J. Sánchez-González, C. A. Sosa-Luna, and I. Vásquez-Moctezuma, “Transfer factors in medical therapy,” Medicina Clinica, vol. 137, no. 6, pp. 273–277, 2011.
[70]  S. Verrier, T. R. Meury, L. Kupcsik, P. Heini, T. Stoll, and M. Alini, “Platelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2,” European Cells & Materials, vol. 20, pp. 403–414, 2010.
[71]  A. Sobotková, L. Másová-Chrastinová, J. Suttnar et al., “Antioxidants change platelet responses to various stimulating events,” Free Radical Biology and Medicine, vol. 47, no. 12, pp. 1707–1714, 2009.
[72]  E. Floriano-Sánchez, C. Villanueva, O. N. Medina-Campos et al., “Nordihydroguaiaretic acid is a potent in vitro scavenger of peroxynitrite, singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid and prevents in vivo ozone-induced tyrosine nitration in lungs,” Free Radical Research, vol. 40, no. 5, pp. 523–533, 2006.
[73]  C. Cruz, R. Correa-Rotter, D. J. Sánchez-González et al., “Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats,” American Journal of Physiology, vol. 293, no. 5, pp. F1691–F1698, 2007.
[74]  C. E. Guerrero-Beltrán, M. Calderón-Oliver, E. Tapia et al., “Sulforaphane protects against cisplatin-induced nephrotoxicity,” Toxicology Letters, vol. 192, no. 3, pp. 278–285, 2010.
[75]  E. Coballase-Urrutia, J. Pedraza-Chaverri, N. Cárdenas-Rodríguez et al., “Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl(4)-induced toxicity in rats,” Experimental and Toxicologic Pathology, vol. 63, no. 4, pp. 363–370, 2011.
[76]  M. Sánchez, E. Anitua, J. Azofra, I. Andía, S. Padilla, and I. Mujika, “Comparison of surgically repaired achilles tendon tears using platelet-rich fibrin matrices,” American Journal of Sports Medicine, vol. 35, no. 2, pp. 245–251, 2007.
[77]  L. Savarino, E. Cenni, C. Tarabusi et al., “Evaluation of bone healing enhancement by lyophilized bone grafts supplemented with platelet gel: a standardized methodology in patients with tibial osteotomy for genu varus,” Journal of Biomedical Materials Research, vol. 76, no. 2, pp. 364–372, 2006.
[78]  D. Dallari, L. Savarino, C. Stagni et al., “Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells,” Journal of Bone and Joint Surgery, vol. 89, no. 11, pp. 2413–2420, 2007.
[79]  H. Kitoh, T. Kitakoji, H. Tsuchiya, M. Katoh, and N. Ishiguro, “Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones,” Bone, vol. 40, no. 2, pp. 522–528, 2007.
[80]  L. Y. Carreon, S. D. Glassman, Y. Anekstein, and R. M. Puno, “Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions,” Spine, vol. 30, no. 9, pp. E243–E247, 2005.
[81]  M. Sanchez, E. Anitua, R. Cugat et al., “Nonunions treated with autologous preparation rich in growth factors,” Journal of Orthopaedic Trauma, vol. 23, no. 1, pp. 52–59, 2009.
[82]  P. R. Siljander, “Platelet-derived microparticles - an updated perspective,” Thrombosis Research, vol. 127, no. 2, suppl 2, pp. S30–S33, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133