Neuropeptide Y (NPY) is a neurotransmitter associated with feeding and obesity. We have constructed an NPY transgenic mouse model (OE- mouse), where targeted overexpression leads to increased levels of NPY in noradrenergic and adrenergic neurons. We previously showed that these mice become obese on a normal chow. Now we aimed to study the effect of a Western-type diet in OE- and wildtype (WT) mice, and to compare the genotype differences in the development of obesity, insulin resistance, and diabetes. Weight gain, glucose, and insulin tolerance tests, fasted plasma insulin, and cholesterol levels were assayed. We found that female OE- mice gained significantly more weight without hyperphagia or decreased activity, and showed larger white and brown fat depots with no difference in UCP-1 levels. They also displayed impaired glucose tolerance and decreased insulin sensitivity. OE- and WT males gained weight robustly, but no difference in the degree of adiposity was observed. However, 40% of but none of the WT males developed hyperglycaemia while on the diet. The present study shows that female OE- mice were not protected from the obesogenic effect of the diet suggesting that increased NPY release may predispose females to a greater risk of weight gain under high caloric conditions. 1. Introduction Neuropeptide Y (NPY) is one of the most common peptides in the brain and an abundant neurotransmitter in the peripheral sympathetic nervous system (SNS). NPY has been linked to several disorders associated with metabolic syndrome. It plays a well-established role in the hypothalamic control of body energy balance by promoting feeding and lipid storage in white adipose tissue (WAT) [1]. However, in pair-fed rats, central NPY administration still leads to increased fat accumulation, which suggests that NPY has an important role in promoting adiposity independent of food intake [2]. NPY outside the hypothalamus in the regulation of energy homeostasis has not been widely studied, although NPY and its receptors are located in key peripheral tissues, such as WAT, liver, and pancreas. NPY inhibits lipolysis in adipocytes via Y1 receptors [3], and could modulate adipose tissue expansion by regulating angiogenesis [4]. NPY also inhibits insulin release via pancreatic Y1 receptors [5]. On the other hand, NPY in the brainstem could modulate sympathetic tone, which is known to have multiple effects on energy homeostasis. To address the role of NPY colocalized with noradrenaline in SNS and brain noradrenergic neurons, we created a transgenic mouse model (OE- mouse), where NPY
References
[1]
B. Beck, “Neuropeptide Y in normal eating and in genetic and dietary-induced obesity,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1471, pp. 1159–1185, 2006.
[2]
N. Zarjevski, I. Cusin, R. Vettor, F. Rohner-Jeanrenaud, and B. Jeanrenaud, “Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity,” Endocrinology, vol. 133, no. 4, pp. 1753–1758, 1993.
[3]
R. L. Bradley, J. P. R. Mansfield, and E. Maratos-Flier, “Neuropeptides, including neuropeptide y and melanocortins, mediate lipolysis in murine adipocytes,” Obesity Research, vol. 13, no. 4, pp. 653–661, 2005.
[4]
L. E. Kuo, J. B. Kitlinska, J. U. Tilan et al., “Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome,” Nature Medicine, vol. 13, no. 7, pp. 803–811, 2007.
[5]
H. R. Patel, Y. Qi, E. J. Hawkins et al., “Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice,” Diabetes, vol. 55, no. 11, pp. 3091–3098, 2006.
[6]
S. T. Ruohonen, U. Pesonen, N. Moritz et al., “Transgenic mice overexpressing neuropeptide y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance,” Diabetes, vol. 57, no. 6, pp. 1517–1525, 2008.
[7]
S. T. Ruohonen, E. Savontaus, P. Rinne et al., “Stress-induced hypertension and increased sympathetic activity in mice overexpressing neuropeptide y in noradrenergic neurons,” Neuroendocrinology, vol. 89, no. 3, pp. 351–360, 2009.
[8]
S. T. Ruohonen, K. Abe, M. Kero et al., “Sympathetic nervous system-targeted neuropeptide Y overexpression in mice enhances neointimal formation in response to vascular injury,” Peptides, vol. 30, no. 4, pp. 715–720, 2009.
[9]
M. K. Karvonen, U. Pesonen, M. Koulu et al., “Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels,” Nature Medicine, vol. 4, no. 12, pp. 1434–1437, 1998.
[10]
J. Kallio, U. Pesonen, K. Kaipio et al., “Altered intracellular processing and release of neuropeptide Y due to leucine 7 to proline 7 polymorphism in the signal peptide of preproneuropeptide Y in humans,” The FASEB Journal, vol. 15, no. 7, pp. 1242–1244, 2001.
[11]
G. C. Mitchell, Q. Wang, P. Ramamoorthy, and M. D. Whim, “A common single nucleotide polymorphism alters the synthesis and secretion of neuropeptide Y,” Journal of Neuroscience, vol. 28, no. 53, pp. 14428–14434, 2008.
[12]
U. Jaakkola, U. Pesonen, E. Vainio-Jylh?, M. Koulu, M. P?ll?nen, and J. Kallio, “The Leu7Pro polymorphism of neuropeptide Y is associated with younger age of onset of type 2 diabetes mellitus and increased risk for nephropathy in subjects with diabetic retinopathy,” Experimental and Clinical Endocrinology and Diabetes, vol. 114, no. 4, pp. 147–152, 2006.
[13]
U. Pesonen, “NPY L7P polymorphism and metabolic diseases,” Regulatory Peptides, vol. 149, no. 1–3, pp. 51–55, 2008.
[14]
U. Jaakkola, J. Kallio, R. J. Heine et al., “Neuropeptide Y polymorphism significantly magnifies diabetes and cardiovascular disease risk in obesity: the Hoorn Study,” European Journal of Clinical Nutrition, vol. 63, no. 1, pp. 150–152, 2009.
[15]
U. Jaakkola, T. Kakko, H. Sepp?l? et al., “The Leu7Pro polymorphism of the signal peptide of neuropeptide Y (NPY) gene is associated with increased levels of inflammatory markers preceding vascular complications in patients with type 2 diabetes,” Microvascular Research, vol. 80, no. 3, pp. 433–439, 2010.
[16]
Z. Qi, H. Fujita, J. Jin et al., “Characterization of susceptibility of inbred mouse strains to diabetic nephropathy,” Diabetes, vol. 54, no. 9, pp. 2628–2637, 2005.
[17]
B. G. Han, C. M. Hao, E. E. Tchekneva et al., “Markers of glycemic control in the mouse: comparisons of 6-h-and overnight-fasted blood glucoses to Hb A1c,” American Journal of Physiology, vol. 295, no. 4, pp. E981–E986, 2008.
[18]
C. M. Novak, C. M. Kotz, and J. A. Levine, “Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats,” American Journal of Physiology, vol. 290, no. 2, pp. E396–E403, 2006.
[19]
V. Kus, T. Prazak, P. Brauner et al., “Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance,” American Journal of Physiology, vol. 295, no. 2, pp. E356–E367, 2008.
[20]
S. Enerb?ck, A. Jacobsson, E. M. Simpson et al., “Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese,” Nature, vol. 387, no. 6628, pp. 90–94, 1997.
[21]
A. Hamann, J. S. Flier, and B. B. Lowell, “Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia,” Endocrinology, vol. 137, no. 1, pp. 21–29, 1996.
[22]
A. Kushi, H. Sasai, H. Koizumi, N. Takeda, M. Yokoyama, and M. Nakamura, “Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15659–15664, 1998.
[23]
L. Zhang, L. MacIa, N. Turner et al., “Peripheral neuropeptide Y Y1 receptors regulate lipid oxidation and fat accretion,” International Journal of Obesity, vol. 34, no. 2, pp. 357–373, 2010.
[24]
F. P. Pralong, C. Gonzales, M. J. Voirol et al., “The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions,” The FASEB Journal, vol. 16, no. 7, pp. 712–714, 2002.
[25]
C. Gonzales, M. J. Voirol, M. Giacomini, R. C. Gaillard, T. Pedrazzini, and F. P. Pralong, “The neuropeptide Y Y1 receptor mediates NPY-induced inhibition of the gonadotrope axis under poor metabolic conditions,” The FASEB Journal, vol. 18, no. 1, pp. 137–139, 2004.
[26]
J. J. Bonavera, M. G. Dube, P. S. Kalra, and S. P. Kalra, “Anorectic effects of estrogen may be mediated by decreased neuropeptide-Y release in the hypothalamic paraventricular nucleus,” Endocrinology, vol. 134, no. 6, pp. 2367–2370, 1994.
[27]
D. G. Baskin, B. J. Norwood, M. W. Schwartz, and D. J. Koerker, “Estradiol inhibits the increase of hypothalamic neuropeptide Y messenger ribonucleic acid expression induced by weight loss in ovariectomized rats,” Endocrinology, vol. 136, no. 12, pp. 5547–5554, 1995.
[28]
S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-α-expressing cells in the nucleus tractus solitarius of ovariectomized rats,” Endocrinology, vol. 149, no. 4, pp. 1609–1617, 2008.
[29]
M. L. Klebig, J. E. Wilkinson, J. G. Geisler, and R. P. Woychik, “Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4728–4732, 1995.
[30]
E. H. Leiter and H. D. Chapman, “Obesity-induced diabetes (diabesity) in C57BL/KsJ mice produces aberrant trans-regulation of sex steroid sulfotransferase genes,” The Journal of Clinical Investigation, vol. 93, no. 5, pp. 2007–2013, 1994.