全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

DOI: 10.1155/2012/981565

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may operate in fibromyalgia. Signs of sympathetic hyperactivity have been described in this condition. Genetic factors and/or distressful lifestyle may lead to this state of sympathetic hyperactivity. Trauma and infection are recognized fibromyalgia triggers. Women who suffer from fibromyalgia have catecholamine-evoked pain. Sympathetic dysfunction may also explain nonpain-related fibromyalgia symptoms. In conclusion, in fibromyalgia, distress could be converted into pain through forced hyperactivity of the sympathetic component of the stress response system. 1. Introduction The key issue in fibromyalgia (FM) research is to define why people suffering from this illness have so much pain. FM is a stress-related disorder [1]. Patients who have FM often associate the onset of their illness to a particularly stressful situation such as physical or emotional trauma [2–4] or to different types of infections [5]. Additionally, they are frequently immersed in a distressful life style [6]. This article reviews scientific evidence suggesting that, in FM, distress becomes pain through malfunction of the sympathetic component of the stress response system. The following topics will be analyzed. (i)Definition of stress, distress, and allostasis.(ii)The sympathetic nervous system as a key element of the stress response system.(iii)The autonomic nervous system as a complex adaptive system.(iv)Animal models linking the development of sympathetic pain to physical or emotional trauma and to different types of infections.(v)Dorsal root ganglia sodium channels as key elements in sympathetically maintained pain.(vi)Physical and emotional distress in FM.(vii)Genetic and clinical data suggesting that FM is a sympathetically maintained neuropathic pain syndrome. (viii)Conclusions. 2. Stress, Distress, and Allostasis The term stress is used in various ways and has different interpretations. Stress has been used to describe the cause (stressor) or the effect (stressed) of a phenomenon. An acceptable physiological definition of stress could be “any stimuli, physical or emotional, that threatens

References

[1]  M. Martinez-Lavin, “Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia,” Arthritis Research and Therapy, vol. 9, no. 4, article 216, 2007.
[2]  M. H. Boisset-Pioro, J. M. Esdaile, and M. A. Fitzcharles, “Sexual and physical abuse in women with fibromyalgia syndrome,” Arthritis and Rheumatism, vol. 38, no. 2, pp. 235–241, 1995.
[3]  G. T. Jones, B. I. Nicholl, J. McBeth, et al., “Road traffic accidents, but not other physically traumatic events, predict the onset of chronic widespread pain: results from the EpiFunD study,” Arthritis Care & Research, vol. 63, no. 5, pp. 696–701, 2011.
[4]  D. Buskila, L. Neumann, G. Vaisberg, D. Alkalay, and F. Wolfe, “Increased rates of fibromyalgia following cervical spine injury: a controlled study of 161 cases of traumatic injury,” Arthritis and Rheumatism, vol. 40, no. 3, pp. 446–452, 1997.
[5]  J. N. Ablin, Y. Shoenfeld, and D. Buskila, “Fibromyalgia, infection and vaccination: two more parts in the etiological puzzle,” Journal of Autoimmunity, vol. 27, no. 3, pp. 145–152, 2006.
[6]  B. Van Houdenhove and P. Luyten, “Stress, depression and fibromyalgia,” Acta Neurologica Belgica, vol. 106, no. 4, pp. 149–156, 2006.
[7]  G. P. Chrousos and P. W. Gold, “The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1244–1252, 1992.
[8]  J. D. Clark, D. R. Rager, and J. P. Calpin, “Animal well-being II. Stress and distress,” Laboratory Animal Science, vol. 47, no. 6, pp. 571–579, 1997.
[9]  M. Martinez-Lavin and A. Vargas, “Complex adaptive system allostasis in fibromyalgia,” Rheumatic Disease Clinics of North America, vol. 35, no. 2, pp. 285–298, 2009.
[10]  M. Martinez-Lavin, “Fibromyalgia conundrum. Is scientific holism the answer?” The Rheumatologist, vol. 7, pp. 26–27, 2008.
[11]  C. B. Saper, “The central autonomic nervous system: conscious visceral perception and autonomic pattern generation,” Annual Review of Neuroscience, vol. 25, pp. 433–469, 2002.
[12]  D. B. Glick, “The autonomic nervous system,” in Miller's Anesthesia, R. D. Miller, Ed., pp. 261–304, Elsevier, New York, NY, USA, 2009.
[13]  K. M. Small, D. W. McGraw, and S. B. Liggett, “Pharmacology and physiology of human adrenergic receptor polymorphisms,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 381–411, 2003.
[14]  M. Martinez-Lavin, O. Infante, and C. Lerma, “Hypothesis: the chaos and complexity theory may help our understanding of fibromyalgia and similar maladies,” Seminars in Arthritis and Rheumatism, vol. 37, no. 4, pp. 260–264, 2008.
[15]  S. H. Kim and J. M. Chung, “An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat,” Pain, vol. 50, no. 3, pp. 355–363, 1992.
[16]  E. M. McLachlan, W. Janig, M. Devor, and M. Michaelis, “Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia,” Nature, vol. 363, no. 6429, pp. 543–546, 1993.
[17]  D. Cadavid, T. O'Neill, H. Schaefer, and A. R. Pachner, “Localization of Borrelia burgdorferi in the nervous system and other organs in a nonhuman primate model of Lyme disease,” Laboratory Investigation, vol. 80, no. 7, pp. 1043–1054, 2000.
[18]  M. Martinez-Lavin and C. Solano, “Dorsal root ganglia, sodium channels, and fibromyalgia sympathetic pain,” Medical Hypotheses, vol. 72, no. 1, pp. 64–66, 2009.
[19]  S. G. Khasar, O. A. Dina, P. G. Green, and J. D. Levine, “Sound stress-induced long-term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines,” Journal of Pain, vol. 10, no. 10, pp. 1073–1077, 2009.
[20]  D. Buskila, “Developments in the scientific and clinical understanding of fibromyalgia,” Arthritis Research & Therapy, vol. 11, no. 5, article 242, 2009.
[21]  H. Dinerman and A. C. Steerc, “Lyme disease associated with fibromyalgia,” Annals of Internal Medicine, vol. 117, no. 4, pp. 281–285, 1992.
[22]  W. H?user, M. Kosseva, N. üceyler, P. Klose, and C. Sommer, “Emotional, physical, and sexual abuse in fibromyalgia syndrome: a systematic review with meta-analysis,” Arthritis Care & Research, vol. 63, no. 6, pp. 808–820, 2011.
[23]  M. Kivim?ki, P. Leino-Arjas, M. Virtanen et al., “Work stress and incidence of newly diagnosed fibromyalgia: prospective cohort study,” Journal of Psychosomatic Research, vol. 57, no. 5, pp. 417–422, 2004.
[24]  R. D. Treede, T. S. Jensen, J. N. Campbell et al., “Neuropathic pain: redefinition and a grading system for clinical and research purposes,” Neurology, vol. 70, no. 18, pp. 1630–1635, 2008.
[25]  M. Martinez-Lavin, M. Vidal, R. E. Barbosa, C. Pineda, J. M. Casanova, and A. Nava, “Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISCRTN70707830],” BMC Musculoskeletal Disorders, vol. 3, article 1, pp. 1–6, 2002.
[26]  L. Diatchenko, A. D. Anderson, G. D. Slade et al., “Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder,” The American Journal of Medical Genetics, Part B, vol. 141, no. 5, pp. 449–462, 2006.
[27]  G. Vargas-Alarcón, J. M. Fragoso, D. Cruz-Robles et al., “Catechol-O-methyl transferase (COMT) gene haplotypes in Mexican and Spanish patients with fibromyalgia,” Arthritis Research and Therapy, vol. 9, no. 5, article R110, 2007.
[28]  F. R. Barbosa, J. B. Matsuda, M. Mazucato et al., “Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients,” Rheumatology International. In press.
[29]  B. I. Nicholl, K. L. Holliday, G. J. Macfarlane et al., “No evidence for a role of the catechol-O-methyltransferase pain sensitivity haplotypes in chronic widespread pain,” Annals of the Rheumatic Diseases, vol. 69, no. 11, pp. 2009–2012, 2010.
[30]  G. Vargas-Alarcón, J. M. Fragoso, D. Cruz-Robles et al., “Association of adrenergic receptor gene polymorphisms with different fibromyalgia syndrome domains,” Arthritis and Rheumatism, vol. 60, no. 7, pp. 2169–2173, 2009.
[31]  G. Vargas-Alarcon, E. Alvarez-Leon, J. M. Fragoso, et al., “Is severe fibromyalgia a sodium channelopathy? A case-control study on SCN9A gene-encoded dorsal root ganglia sodium channels polymorphisms,” submitted for publication.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133