全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Endurance and Resistance Training on Calcitonin Gene-Related Peptide and Acetylcholine Receptor at Slow and Fast Twitch Skeletal Muscles and Sciatic Nerve in Male Wistar Rats

DOI: 10.1155/2012/962651

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to investigate effects of endurance and resistance training (ET and RT) on CGRP and AChRs at slow and fast twitch muscles and sciatic nerve in rats. Twenty-five male rats were randomly assigned into three groups including sedentary (SED), endurance training (ET), and resistance training (RT). Animals of ET exercised for 12 weeks, five times/week, and 60?min/day at 30?m/min. Animals of RT were housed in metal cage with 2?m high wire-mesh tower, with water bottles set at the top. 48?h after the last session of training protocol, animals were anaesthetized. The right sciatic nerves were removed; then, Soleus (SOL) and Tibialis anterior (TA) muscles were excised and immediately snap frozen in liquid nitrogen. All frozen tissues were stored at ?80°C. Results showed that, after both ET and RT, CGRP content as well as AChR content of SOL and TA muscles significantly increased. But there was no significant difference among groups at sciatic nerve’ CGRP content. In conclusion, data demonstrate that ET and RT lead to changes of CGRP and AChR content of ST and FT muscles. The changes indicate to the importance of neuromuscular activity. 1. Introduction Calcitonin gene-related peptide (CGRP), generated from the calcitonin gene [1–3], is distributed in the peripheral and central nervous systems of vertebrate and invertebrate species [4, 5]. CGRP’s target organs are numerous, and its range of biological actions is extensive; for instance, CGRP is a very potent vasodilator [4–7], possesses positive chronotropic and inotropic effects [8], modulates neurotransmission in central [9] and peripheral [9] synapses, and modulates systemic circulation [4, 10]. In the peripheral nervous system, CGRP coexists with ACh in motoneurons [3], and studies have shown that enhances the expression of the acetylcholine receptor subunit mRNA in skeletal muscles [11], and prolongs the mean open time of AChR channels [12]. Other studies also have indicated that motoneuron but not is upregulated by axotomy or blockade of neuronal activity, suggesting that this particular peptide plays a role in motoneuron regeneration [13, 14]. These results, therefore, suggest that acts as an anterograde “trophic” agent that controls the synthesis and function of muscle AChRs via cAMP-mediated pathways at the neuromuscular junction (NMJ) [9, 15]. Its proposed effects at the NMJ include prolonged mean open time of AChR channels [13] and increased desensitization of AChR via a phosphorylation mechanism in the short term [16–19] and increased synthesis of AChR via a cAMP-associated

References

[1]  S. G. Amara, V. Jonas, and M. G. Rosenfeld, “Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products,” Nature, vol. 298, no. 5871, pp. 240–244, 1982.
[2]  F. Piehl, U. Arvidsson, T. H?kfelt, and S. Cullheim, “Calcitonin gene-related peptide-like immunoreactivity in motoneuron pools innervating different hind limb muscles in the rat,” Experimental Brain Research, vol. 96, no. 2, pp. 291–303, 1993.
[3]  M. G. Rosenfeld, S. G. Amara, and R. M. Evans, “Alternative RNA processing: determining neuronal phenotype,” Science, vol. 225, no. 4668, pp. 1315–1320, 1984.
[4]  P. Y. Deng and Y. J. Li, “Calcitonin gene-related peptide and hypertension,” Peptides, vol. 26, no. 9, pp. 1676–1685, 2005.
[5]  S. J. Wimalawansa and A. A. El-Kholy, “Comparative study of distribution and biochemical characterization of brain calcitonin gene-related peptide receptors in five different species,” Neuroscience, vol. 54, no. 2, pp. 513–519, 1993.
[6]  M. R. Deschenes, K. A. Tenny, and M. H. Wilson, “Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction,” Neuroscience, vol. 137, no. 4, pp. 1277–1283, 2006.
[7]  R. Gharakhanlou, S. Chadan, and P. Gardiner, “Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat,” Neuroscience, vol. 89, no. 4, pp. 1229–1239, 1999.
[8]  G. K. Asimakis, D. J. DiPette, and V. R. Conti, “Hemodynamic action of calcitonin gene-related peptide in the isolated rat heart,” Life Sciences, vol. 41, no. 5, pp. 597–603, 1987.
[9]  J. P. Changeux, A. Q. Devillers-Thi?ry, J. Giraudat, M. Dennis, O. Heidmann, A. Klarsfeld, et al., “The acetylcholine receptor: functional organization and evolution during synapse formation,” in Strategies and Prospects in Neuroscience, O. Hyaishi, Ed., pp. 29–76, 1987.
[10]  D. A. Homonko and E. Theriault, “Downhill running preferentially increases CGRP in fast glycolytic muscle fibers,” Journal of Applied Physiology, vol. 89, no. 5, pp. 1928–1936, 2000.
[11]  H. L. Fernandez, G. S. Ross, and I. Nadelhaft, “Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles,” Brain Research, vol. 844, no. 1-2, pp. 83–97, 1999.
[12]  M. Leveritt, P. J. Abernethy, B. K. Barry, and P. A. Logan, “Concurrent strength and endurance training. A review,” Sports Medicine, vol. 28, no. 6, pp. 413–427, 1999.
[13]  J. Calderó, A. Casanovas, A. Sorribas, and J. E. Esquerda, “Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy,” Neuroscience, vol. 48, no. 2, pp. 449–461, 1992.
[14]  M. M. Salpeter and R. H. Loring, “Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control,” Progress in Neurobiology, vol. 25, no. 4, pp. 297–325, 1985.
[15]  H. L. Fernandez and C. A. Hodges-Savola, “Axoplasmic transport of calcitonin gene-related peptide in rat peripheral nerve as a function of age,” Neurochemical Research, vol. 19, no. 11, pp. 1369–1377, 1994.
[16]  B. Fontaine, A. Klarsfeld, and J. P. Changeux, “Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways,” Journal of Cell Biology, vol. 105, no. 3, pp. 1337–1342, 1987.
[17]  P. N. McWilliam, A. Maqbool, T. F. C. Batten, and J. C. Kaye, “Influence of peripheral targets on the expression of calcitonin gene- related peptide immunoreactivity in rat cranial motoneurones,” Journal of Neurobiology, vol. 28, no. 4, pp. 506–514, 1995.
[18]  C. Sala, J. S. Andreose, G. Fumagalli, and T. L?mo, “Calcitonin gene-related peptide: possible role in formation and maintenance of neuromuscular junctions,” Journal of Neuroscience, vol. 15, no. 1, pp. 520–528, 1995.
[19]  S. J. Moss, P. C. Harkness, I. J. Mason, E. A. Barnard, and A. W. Mudge, “Evidence that CGRP and cAMP increase transcription of AChR α-subunit gene, but not of other subunit genes,” Journal of Molecular Neuroscience, vol. 3, no. 2, pp. 101–108, 1991.
[20]  K. Miles, P. Greengard, and R. L. Huganir, “Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes,” Neuron, vol. 2, no. 5, pp. 1517–1524, 1989.
[21]  C. O'Reilly, D. Pette, and K. Ohlendieck, “Increased expression of the nicotinic acetylcholine receptor in stimulated muscle,” Biochemical and Biophysical Research Communications, vol. 300, no. 2, pp. 585–591, 2003.
[22]  H. L. Fernandez and C. A. Hodges-Savola, “Physiological regulation of G4 AChe in fast-twitch muscle: effects of exercise and CGRP,” Journal of Applied Physiology, vol. 80, no. 1, pp. 357–362, 1996.
[23]  C. E. Blanco, P. Popper, and P. Micevych, “α-CGRP mRNA levels in motoneurons innervating specific rat muscles,” Molecular Brain Research, vol. 44, no. 2, pp. 253–261, 1997.
[24]  S. Forsgren, A. Bergh, E. Carlsson, and L. E. Thornell, “Calcitonin gene-related peptide expression at endplates of different fibre types in muscles in rat hind limbs,” Cell and Tissue Research, vol. 274, no. 3, pp. 439–446, 1993.
[25]  E. C. Goodman and L. L. Iversen, “Calcitonin gene-related peptide: novel neuropeptide,” Life Sciences, vol. 38, no. 24, pp. 2169–2178, 1986.
[26]  D. A. Homonko and E. Theriault, “Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise,” International Journal of Sports Medicine, vol. 18, no. 7, pp. 503–509, 1997.
[27]  S. Jonhagen, P. Ackermann, T. Saartok, and P. A. Renstrom, “Calcitonin gene related peptide and neuropeptide Y in skeletal muscle after eccentric exercise: a microdialysis study,” British Journal of Sports Medicine, vol. 40, no. 3, pp. 264–267, 2006.
[28]  S. Forsgren, A. Bergh, E. Carlsson, and L. E. Thornell, “Studies on the distribution of calcitonin gene-related peptide-like and substance P-like immunoreactivities in rat hind limb muscles,” Histochemical Journal, vol. 24, no. 6, pp. 345–353, 1992.
[29]  M. H. Andonian and M. A. Fahim, “Endurance exercise alters the morphology of fast- and slow-twitch rat neuromuscular junctions,” International Journal of Sports Medicine, vol. 9, no. 3, pp. 218–223, 1988.
[30]  A. A. Eisen, S. Carpenter, G. Karpati, and A. Bellavance, “The effect of muscle hyper- and hypoactivity upon fibre diameters of intact and regenerating nerves,” Journal of the Neurological Sciences, vol. 20, no. 4, pp. 457–469, 1973.
[31]  B. Fontaine, A. Klarsfeld, T. Hokfeld, and J. P. Changeux, “Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes,” Neuroscience Letters, vol. 71, no. 1, pp. 59–65, 1986.
[32]  M. Osterlund, B. Fontaine, A. Devillers-Thiery, B. Geoffroy, and J. P. Changeux, “Acetylcholine receptor expression in primary cultures of embryonic chick myotubes—I. Discoordinate regulation of α-, γ- and δ-subunit gene expression by calcitonin gene-related peptide and by muscle electrical activity,” Neuroscience, vol. 32, no. 2, pp. 279–287, 1989.
[33]  B. Lu, W. Fu, P. Greengard, and M. Poo, “Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction,” Nature, vol. 362, no. 6424, pp. 76–79, 1993.
[34]  T. F. C. Batten, A. Maqbool, and P. N. McWilliam, “CGRP in brain stem motoneurons: dependent on target innervated?” Annals of the New York Academy of Sciences, vol. 657, pp. 458–460, 1992.
[35]  M. R. Deschenes, C. M. Maresh, J. F. Crivello, L. E. Armstrong, W. J. Kraemer, and J. Covault, “The effects of exercise training of different intensities on neuromuscular junction morphology,” Journal of Neurocytology, vol. 22, no. 8, pp. 603–615, 1993.
[36]  M. R. Deschenes, D. A. Judelson, W. J. Kraemer et al., “Effects of resistance training on neuromuscular junction morphology,” Muscle and Nerve, vol. 23, no. 10, pp. 1576–1581, 2000.
[37]  M. G. Rosenfeld, J. J. Mermod, and S. G. Amara, “Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing,” Nature, vol. 304, no. 5922, pp. 129–135, 1983.
[38]  K. Takami, K. Hashimoto, and S. Uchida, “Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm,” Japanese Journal of Pharmacology, vol. 42, no. 3, pp. 345–350, 1986.
[39]  L. A. Kaminski, Central Nerve System Adaptation to Exercise Training, Michigan State University, 2004.
[40]  M. A. Fahim, “Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice,” Journal of Applied Physiology, vol. 83, no. 1, pp. 59–66, 1997.
[41]  O. Tarabal, J. Calderó, J. Ribera, et al., “Regulation of motoneuronal calcitonin gene-related peptide (CGRP) during axonal growth and neuromuscular synaptic plasticity induced by botulinum toxin in rats,” European Journal of Neuroscience, vol. 8, no. 4, pp. 829–836, 1996.
[42]  Y. Kashihara, M. Sakaguchi, and M. Kuno, “Axonal transport and distribution of endogenous calcitonin gene-related peptide in rat peripheral nerve,” Journal of Neuroscience, vol. 9, no. 11, pp. 3796–3802, 1989.
[43]  G. N. Onuoha and E. K. Alpar, “Calcitonin gene-related peptide and other neuropeptides in the plasma of patients with soft tissue injury,” Life Sciences, vol. 65, no. 13, pp. 1351–1358, 1999.
[44]  M. Sch?fers, L. S. Sorkin, and C. Sommer, “Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats,” Pain, vol. 104, no. 3, pp. 579–588, 2003.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133