全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gene Therapy for Parkinson's Disease

DOI: 10.1155/2012/757305

Full-Text   Cite this paper   Add to My Lib

Abstract:

Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field. 1. Introduction Parkinson’s disease (PD) is a common neurodegenerative disorder that will assume increasing clinical importance in an ageing society, with an average age of onset between 60 and 65 years, but a peak incidence is found between the ages of 70 and 79 years. The specific incidence is dependent on the age structure of the population studied and is difficult to assess precisely but is around 17 per 100,000 according to a systematic review in this area [1]. PD is classically characterised by the loss of striatal dopaminergic neurons within the basal ganglia; however, the underlying pathophysiology is very complex. Both excitatory glutamatergic and inhibitory γ-aminobutyric acid pathways (GABA) involved in basal ganglia regulation of movement are affected [2]. These changes lead to disinhibition of subthalamic nucleus (STN) output, which in turn increases the activity of excitatory projections to the internal globus pallidus (GPi) and substantia nigra pars reticularis (SNpr). The net result is increased inhibitory outflow from the GPi and SNpr to other basal ganglia nuclei, thalamus, and cortex, leading to the typical motor features of PD [3]. Various therapeutic approaches that target the STN or GPi have been used to improve motor function in PD, including stereotactic lesioning [4, 5], high frequency deep brain stimulation [6, 7] and pharmacological silencing [8]. Dopamine replacement therapies, such

References

[1]  D. Twelves, K. S. M. Perkins, and C. Counsell, “Systematic review of incidence studies of Parkinson's disease,” Movement Disorders, vol. 18, no. 1, pp. 19–31, 2003.
[2]  P. Brown, A. Oliviero, P. Mazzone, A. Insola, P. Tonali, and V. Di Lazzaro, “Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease,” Journal of Neuroscience, vol. 21, no. 3, pp. 1033–1038, 2001.
[3]  T. Wichmann and M. R. DeLong, “Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder,” Annals of the New York Academy of Sciences, vol. 991, pp. 199–213, 2003.
[4]  L. Alvarez, R. Macias, J. Guridi et al., “Dorsal subthalamotomy for Parkinson's disease,” Movement Disorders, vol. 16, no. 1, pp. 72–78, 2001.
[5]  P. C. Su, H. M. Tseng, H. M. Liu, R. F. Yen, and H. H. Liou, “Treatment of advanced Parkinson's disease by subthalamotomy: one-year results,” Movement Disorders, vol. 18, no. 5, pp. 531–538, 2003.
[6]  A. L. Benabid, P. Pollak, D. Gao et al., “Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders,” Journal of Neurosurgery, vol. 84, no. 2, pp. 203–214, 1996.
[7]  J. A. Obeso, C. W. Olanow, M. C. Rodriguez-Oroz, P. Krack, R. Kumar, and A. E. Lang, “Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease,” New England Journal of Medicine, vol. 345, no. 13, pp. 956–963, 2001.
[8]  R. Levy, A. E. Lang, J. O. Dostrovsky et al., “Lidocaine and muscimol microinjections in subthalamic nucleus reverse parkinsonian symptoms,” Brain, vol. 124, no. 10, pp. 2105–2118, 2001.
[9]  S. Fahn, “Levodopa in the treatment of Parkinson's disease,” Journal of Neural Transmission, 71, pp. 1–15, 2006.
[10]  Parkinson Study Group, “Pramipexole vs levodopa as initial treatment for Parkinson's disease: a randomised controlled trial,” Journal of the American Medical Association, vol. 284, no. 15, pp. 1931–1938, 2000.
[11]  J. H. Kordower, M. E. Emborg, J. Bloch et al., “Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease,” Science, vol. 290, no. 5492, pp. 767–773, 2000.
[12]  W. J. Marks Jr., R. T. Bartus, J. Siffert et al., “Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial,” The Lancet Neurology, vol. 9, no. 12, pp. 1164–1172, 2010.
[13]  J. L. Eberling, W. J. Jagust, C. W. Christine et al., “Results from a phase I safety trial of hAADC gene therapy for Parkinson disease,” Neurology, vol. 70, no. 21, pp. 1980–1983, 2008.
[14]  M. Azzouz, E. Martin-Rendon, R. D. Barber et al., “Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease,” Journal of Neuroscience, vol. 22, no. 23, pp. 10302–10312, 2002.
[15]  K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006.
[16]  S. H. Fox, J. M. Brotchie, and A. E. Lang, “Non-dopaminergic treatments in development for Parkinson's disease,” The Lancet Neurology, vol. 7, no. 10, pp. 927–938, 2008.
[17]  R. Huang, L. Han, J. Li et al., “Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles,” Journal of Gene Medicine, vol. 11, no. 9, pp. 754–763, 2009.
[18]  J. A. Gonzalez-Barrios, M. Lindahl, M. J. Bannon et al., “Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats,” Molecular Therapy, vol. 14, no. 6, pp. 857–865, 2006.
[19]  C. F. Xia, R. J. Boado, Y. Zhang, C. Chu, and W. M. Pardridge, “Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson's disease with Trojan horse liposomes and a tyrosine hydroxylase promoter,” Journal of Gene Medicine, vol. 10, no. 3, pp. 306–315, 2008.
[20]  A. Srivastava, E. W. Lusby, and K. I. Berns, “Nucleotide sequence and organization of the adeno-associated virus 2 genome,” Journal of Virology, vol. 45, no. 2, pp. 555–564, 1983.
[21]  B. C. Schnepp, K. R. Clark, D. L. Klemanski, C. A. Pacak, and P. R. Johnson, “Genetic fate of recombinant adeno-associated virus vector genomes in muscle,” Journal of Virology, vol. 77, no. 6, pp. 3495–3504, 2003.
[22]  R. J. Mandel, C. Burger, and R. O. Snyder, “Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production,” Experimental Neurology, vol. 209, no. 1, pp. 58–71, 2008.
[23]  N. Muzyczka, “Use of adeno-associated virus as a general transduction vector for mammalian cells,” Current Topics in Microbiology and Immunology, vol. 158, pp. 97–129, 1992.
[24]  G. Gao, L. H. Vandenberghe, M. R. Alvira et al., “Clades of adeno-associated viruses are widely disseminated in human tissues,” Journal of Virology, vol. 78, no. 12, pp. 6381–6388, 2004.
[25]  H. L. Fitzsimons, V. Riban, R. J. Bland, J. L. Wendelken, C. V. Sapan, and M. J. During, “Biodistribution and safety assessment of AAV2-GAD following intrasubthalamic injection in the rat,” Journal of Gene Medicine, vol. 12, no. 4, pp. 385–398, 2010.
[26]  H. B. Dodiya, T. Bjorklund, J. Stansell III, R. J. Mandel, D. Kirik, and J. H. Kordower, “Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates,” Molecular Therapy, vol. 18, no. 3, pp. 579–587, 2010.
[27]  Y. Q. Xue, B. F. Ma, L. R. Zhao et al., “AAV9-mediated erythropoietin gene delivery into the brain protects nigral dopaminergic neurons in a rat model of Parkinson's disease,” Gene Therapy, vol. 17, no. 1, pp. 83–94, 2010.
[28]  C. S. Peden, C. Burger, N. Muzyczka, and R. J. Mandel, “Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain,” Journal of Virology, vol. 78, no. 12, pp. 6344–6359, 2004.
[29]  L. M. Sanftner, B. M. Suzuki, M. M. Doroudchi et al., “Striatal delivery of rAAV-hAADC to rats with preexisting immunity to AAV,” Molecular Therapy, vol. 9, no. 3, pp. 403–409, 2004.
[30]  P. R. Lowenstein, “Input virion proteins: cryptic targets of antivector immune responses in preimmunized subjects,” Molecular Therapy, vol. 9, no. 6, pp. 771–774, 2004.
[31]  P. E. Monahan, K. Jooss, and M. S. Sands, “Safety of adeno-associated virus gene therapy vectors: a current evaluation,” Expert Opinion on Drug Safety, vol. 1, no. 1, pp. 79–91, 2002.
[32]  L. Tenenbaum, E. Lehtonen, and P. E. Monahan, “Evaluation of risks related to the use of adeno-associated virus-based vectors,” Current Gene Therapy, vol. 3, no. 6, pp. 545–565, 2003.
[33]  R. J. Samulski, L. S. Chang, and T. Shenk, “Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression,” Journal of Virology, vol. 63, no. 9, pp. 3822–3828, 1989.
[34]  E. Vigna and L. Naldini, “Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy,” Journal of Gene Medicine, vol. 2, no. 5, pp. 308–316, 2000.
[35]  I. M. Verma and M. D. Weitzman, “Gene therapy: twenty-first century medicine,” Annual Review of Biochemistry, vol. 74, pp. 711–738, 2005.
[36]  L. Naldini, U. Bl?mer, P. Gallay et al., “In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector,” Science, vol. 272, no. 5259, pp. 263–267, 1996.
[37]  H. Hioki, H. Kameda, H. Nakamura et al., “Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters,” Gene Therapy, vol. 14, no. 11, pp. 872–882, 2007.
[38]  J. Jakobsson and C. Lundberg, “Lentiviral vectors for use in the central nervous system,” Molecular Therapy, vol. 13, no. 3, pp. 484–493, 2006.
[39]  R. Zufferey, D. Nagy, R. J. Mandel, L. Naldini, and D. Trono, “Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo,” Nature Biotechnology, vol. 15, no. 9, pp. 871–875, 1997.
[40]  J. Zhao and A. M. L. Lever, “Lentivirus-mediated gene expression,” Methods in Molecular Biology, vol. 366, pp. 343–355, 2007.
[41]  D. L. Choi-Lundberg, Q. Lin, Y. N. Chang et al., “Dopaminergic neurons protected from degeneration by GDNF gene therapy,” Science, vol. 275, no. 5301, pp. 838–841, 1997.
[42]  J. P. Lynch, M. Fishbein, and M. Echavarria, “Adenovirus,” Seminars in Respiratory and Critical Care Medicine, vol. 32, no. 4, pp. 494–511, 2011.
[43]  P. R. Lowenstein and M. G. Castro, “Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences,” Gene Therapy, vol. 10, no. 11, pp. 946–954, 2003.
[44]  G. Schiedner, N. Morral, R. J. Parks et al., “Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity,” Nature Genetics, vol. 18, no. 2, pp. 180–183, 1998.
[45]  P. R. Lowenstein, C. E. Thomas, P. Umana et al., “High-capacity, helper-dependent, “gutless” adenoviral vectors for gene transfer into brain,” Methods in Enzymology, vol. 346, article no. 17, pp. 292–311, 2002.
[46]  D. A. Muruve, “The innate immune response to adenovirus vectors,” Human Gene Therapy, vol. 15, no. 12, pp. 1157–1166, 2004.
[47]  A. Kamen and O. Henry, “Development and optimization of an adenovirus production process,” Journal of Gene Medicine, vol. 6, supplement 1, pp. S184–S192, 2004.
[48]  D. J. J. Carr and L. Tomanek, “Herpes simplex virus and the chemokines that mediate the inflammation,” Current Topics in Microbiology and Immunology, vol. 303, pp. 47–65, 2006.
[49]  D. J. Fink and J. C. Glorioso, “Engineering herpes simplex virus vectors for gene transfer to neurons,” Nature Medicine, vol. 3, no. 3, pp. 357–359, 1997.
[50]  H. Cao, G. R. Zhang, X. Wang, L. Kong, and A. I. Geller, “Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles,” BMC Neuroscience, vol. 10, no. 9, article 37, 2008.
[51]  M. Rasmussen, L. Kong, G. R. Zhang et al., “Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter,” Brain Research, vol. 1144, no. 1, pp. 19–32, 2007.
[52]  L. A. Samaniego, L. Neiderhiser, and N. A. DeLuca, “Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins,” Journal of Virology, vol. 72, no. 4, pp. 3307–3320, 1998.
[53]  C. E. Lilley, R. H. Branston, and R. S. Coffin, “Herpes simplex virus vectors for the nervous system,” Current Gene Therapy, vol. 1, no. 4, pp. 339–358, 2001.
[54]  Oxford BioMedica, “ProSavin,” Oxford Biomedica, http://www.oxfordbiomedica.co.uk/page.asp?pageid=29.
[55]  B. Jarraya, S. Boulet, G. S. Ralph et al., “Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia,” Science Translational Medicine, vol. 1, no. 2, p. 2ra4, 2009.
[56]  C. Hyman, M. Hofer, Y. A. Barde et al., “BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra,” Nature, vol. 350, no. 6315, pp. 230–232, 1991.
[57]  R. L. Klein, M. H. Lewis, N. Muzyczka, and E. M. Meyer, “Prevention of 6-hydroxydopamine-induced rotational behavior by BDNF somatic gene transfer,” Brain Research, vol. 847, no. 2, pp. 314–320, 1999.
[58]  A. Bj?rklund, D. Kirik, C. Rosenblad, B. Georgievska, C. Lundberg, and R. J. Mandel, “Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model,” Brain Research, vol. 886, no. 1-2, pp. 82–98, 2000.
[59]  W. J. Marks Jr., J. L. Ostrem, L. Verhagen et al., “Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial,” The Lancet Neurology, vol. 7, no. 5, pp. 400–408, 2008.
[60]  C. W. Christine, P. A. Starr, P. S. Larson et al., “Safety and tolerability of putaminal AADC gene therapy for Parkinson disease,” Neurology, vol. 73, no. 20, pp. 1662–1669, 2009.
[61]  M. G. Kaplitt, A. Feigin, C. Tang et al., “Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial,” The Lancet, vol. 369, no. 9579, pp. 2097–2105, 2007.
[62]  P. A. LeWitt, A. R. Rezai, M. A. Leehey et al., “AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial,” The Lancet Neurology, vol. 10, no. 4, pp. 309–319, 2011.
[63]  Amsterdam Molecular Therapeutics, “AMT obtains license to amgen’s GDNF gene to develop treatment for Parkinson’s disease with AMT’s proprietary gene therapy platform. Amsterdam molecular therapeutics,” September 2008, http://www.amtbiopharma.com/news/92/182/AMT-Obtains-License-to-Amgen-s-GDNF-Gene-to-Develop-Treatment-for-Parkinson-s-Disease-with-AMT-s-Proprietary-Gene-Therapy-Platform.html.
[64]  K. S. Bankiewicz, J. L. Eberling, M. Kohutnicka et al., “Convection-enhanced delivery of AAV vector in Parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach,” Experimental Neurology, vol. 164, no. 1, pp. 2–14, 2000.
[65]  K. Kitahama, K. Ikemoto, A. Jouvet et al., “Aromatic l-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla,” Journal of Chemical Neuroanatomy, vol. 38, no. 2, pp. 130–140, 2009.
[66]  K. S. Bankiewicz, J. Forsayeth, J. L. Eberling et al., “Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC,” Molecular Therapy, vol. 14, no. 4, pp. 564–570, 2006.
[67]  P. Hadaczek, J. L. Eberling, P. Pivirotto, J. Bringas, J. Forsayeth, and K. S. Bankiewicz, “Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC,” Molecular Therapy, vol. 18, no. 8, pp. 1458–1461, 2010.
[68]  C. Hamani, J. A. Saint-Cyr, J. Fraser, M. Kaplitt, and A. M. Lozano, “The subthalamic nucleus in the context of movement disorders,” Brain, vol. 127, no. 1, pp. 4–20, 2004.
[69]  H. Bergman, T. Wichmann, and M. R. DeLong, “Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus,” Science, vol. 249, no. 4975, pp. 1436–1438, 1990.
[70]  D. F. Bu, M. G. Erlander, B. C. Hitz et al., “Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2115–2119, 1992.
[71]  M. G. Erlander, N. J. K. Tillakaratne, S. Feldblum, N. Patel, and A. J. Tobin, “Two genes encode distinct glutamate decarboxylases,” Neuron, vol. 7, no. 1, pp. 91–100, 1991.
[72]  S. Feldblum, M. G. Erlander, and A. J. Tobin, “Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles,” Journal of Neuroscience Research, vol. 34, no. 6, pp. 689–706, 1993.
[73]  J. Mi, S. Chatterjee, K. K. Wong, C. Forbes, G. Lawless, and A. J. Tobin, “Recombinant adeno-associated virus (AAV) drives constitutive production of glutamate decarboxylase in neural cell lines,” Journal of Neuroscience Research, vol. 57, no. 1, pp. 137–148, 1999.
[74]  J. Luo, M. G. Kaplitt, H. L. Fitzsimons et al., “Subthalamic GAD gene therapy in a Parkinson's disease rat model,” Science, vol. 298, no. 5592, pp. 425–429, 2002.
[75]  B. Lee, H. Lee, Y. R. Nam, J. H. Oh, Y. H. Cho, and J. W. Chang, “Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models,” Gene Therapy, vol. 12, no. 15, pp. 1215–1222, 2005.
[76]  M. E. Emborg, M. Carbon, J. E. Holden et al., “Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 3, pp. 501–509, 2007.
[77]  L. F. H. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, vol. 260, no. 5111, pp. 1130–1132, 1993.
[78]  A. Tomac, E. Lindqvist, L. F. H. Lin et al., “Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo,” Nature, vol. 373, no. 6512, pp. 335–339, 1995.
[79]  S. S. Gill, N. K. Patel, G. R. Hotton et al., “Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease,” Nature Medicine, vol. 9, no. 5, pp. 589–595, 2003.
[80]  A. E. Lang, S. Gill, N. K. Patel et al., “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Annals of Neurology, vol. 59, no. 3, pp. 459–466, 2006.
[81]  N. K. Patel, M. Bunnage, P. Plaha, C. N. Svendsen, P. Heywood, and S. S. Gill, “Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study,” Annals of Neurology, vol. 57, no. 2, pp. 298–302, 2005.
[82]  J. T. Slevin, D. M. Gash, C. D. Smith et al., “Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal,” Journal of Neurosurgery, vol. 106, no. 4, pp. 614–620, 2007.
[83]  P. T. Kotzbauer, P. A. Lampe, R. O. Heuckeroth et al., “Neurturin, a relative of glial-cell-line-derived neurotrophic factor,” Nature, vol. 384, no. 6608, pp. 467–470, 1996.
[84]  D. J. Creedon, M. G. Tansey, R. H. Baloh et al., “Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 7018–7023, 1997.
[85]  B. A. Horger, M. C. Nishimura, M. P. Armanini et al., “Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons,” Journal of Neuroscience, vol. 18, no. 13, pp. 4929–4937, 1998.
[86]  J. H. Kordower, C. D. Herzog, B. Dass et al., “Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys,” Annals of Neurology, vol. 60, no. 6, pp. 706–715, 2006.
[87]  C. D. Herzog, B. Dass, M. Gasmi et al., “Transgene expression, bioactivity, and safety of CERE-120 (AAV2-Neurturin) following delivery to the monkey striatum,” Molecular Therapy, vol. 16, no. 10, pp. 1737–1744, 2008.
[88]  C. D. Herzog, L. Brown, D. Gammon et al., “Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support CERE-120 for Parkinson's disease,” Neurosurgery, vol. 64, no. 4, pp. 602–612, 2009.
[89]  D. E. Huddleston and S. A. Factor, “Of monkeys and men: analysis of the phase 2 double-blind, sham-surgery controlled, randomized trial of AAV2-neurturin gene therapy for parkinson's disease,” Current Neurology and Neuroscience Reports, vol. 11, no. 4, pp. 345–348, 2011.
[90]  R. T. Bartus, C. D. Herzog, Y. Chu et al., “Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains,” Movement Disorders, vol. 26, no. 1, pp. 27–36, 2011.
[91]  M. R. Douglas, A. J. Lewthwaite, and D. J. Nicholl, “Genetics of Parkinson's disease and parkinsonism,” Expert Review of Neurotherapeutics, vol. 7, no. 6, pp. 657–666, 2007.
[92]  M. Yamada, Y. Mizuno, and H. Mochizuki, “Parkin gene therapy for α-synucleinopathy: a rat model of Parkinson's disease,” Human Gene Therapy, vol. 16, no. 2, pp. 262–270, 2005.
[93]  C. Lo Bianco, B. L. Schneider, M. Bauer et al., “Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17510–17515, 2004.
[94]  T. Yasuda, S. Miyachi, R. Kitagawa et al., “Neuronal specificity of α-synuclein toxicity and effect of Parkin co-expression in primates,” Neuroscience, vol. 144, no. 2, pp. 743–753, 2007.
[95]  T. Yasuda, H. Hayakawa, T. Nihira et al., “Parkin-mediated protection of dopaminergic neurons in a chronic MPTP-minipump mouse model of parkinson disease,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 8, pp. 686–697, 2011.
[96]  J. N. Guzman, J. Sanchez-Padilla, D. Wokosin et al., “Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1,” Nature, vol. 468, no. 7324, pp. 696–700, 2010.
[97]  J. C. Paterna, A. Leng, E. Weber, J. Feldon, and H. Büeler, “DJ-1 and parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice,” Molecular Therapy, vol. 15, no. 4, pp. 698–704, 2007.
[98]  L. de Y?igo-Mojado, I. Martín-Ruíz, and J. D. Sutherland, “Efficient Allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi,” PLoS ONE, vol. 6, no. 6, article e21352, 2011.
[99]  T. B. Lewis and D. G. Standaert, “Design of clinical trials of gene therapy in Parkinson disease,” Experimental Neurology, vol. 209, no. 1, pp. 41–47, 2008.
[100]  R. J. Mandel, “CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer's disease,” Current Opinion in Molecular Therapeutics, vol. 12, no. 2, pp. 240–247, 2010.
[101]  S. W. J. McPhee, C. G. Janson, C. Li et al., “Immune responses to AAV in a phase I study for Canavan disease,” Journal of Gene Medicine, vol. 8, no. 5, pp. 577–588, 2006.
[102]  J. H. Kordower and C. W. Olanow, “Regulatable promoters and gene therapy for Parkinson's disease: is the only thing to fear, fear itself?” Experimental Neurology, vol. 209, no. 1, pp. 34–40, 2008.
[103]  N. Somia and I. M. Verma, “Gene therapy: trials and tribulations,” Nature Reviews Genetics, vol. 1, no. 2, pp. 91–99, 2000.
[104]  C. Mueller and T. R. Flotte, “Clinical gene therapy using recombinant adeno-associated virus vectors,” Gene Therapy, vol. 15, no. 11, pp. 858–863, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413