全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lack of Short-Term Effectiveness of Rotating Treadmill Training on Turning in People with Mild-to-Moderate Parkinson's Disease and Healthy Older Adults: A Randomized, Controlled Study

DOI: 10.1155/2012/623985

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since turning is often impaired in Parkinson's disease (PD) and may lead to falls, it is important to develop targeted treatment strategies for turning. We determined the effects of rotating treadmill training on turning in individuals with PD. This randomized controlled study evaluated in-place turns, functional turning (timed-up-and-go), and gait velocity before and after 15 minutes of rotating treadmill training or stepping in place in 26 people with PD and 27 age-matched controls. A subset of participants with PD completed five consecutive days of rotating treadmill training. Fast as possible gait velocity, timed-up-and-go time, turn duration, and steps to turn were impaired in PD compared to controls ( ) and did not improve following either intervention ( ). Preferred pace gait velocity and timing of yaw rotation onset of body segments (head, trunk, pelvis) during turns were not different in PD ( ) and did not change following either intervention. No improvements in gait or turning occurred after five days of rotating treadmill training, compared to one day. The rotating treadmill is not recommended for short-term rehabilitation of impaired in-place turning in the general PD population. 1. Introduction Parkinson’s disease (PD) is a progressive neurodegenerative disease resulting in a variety of motor symptoms. Individuals with PD frequently experience difficulty with gait and turning, with more than half reporting difficulty turning [1–3] which may result in falls and serious injuries [4]. Symptoms of PD are treated using various therapeutic approaches; however, there are currently no effective treatment options that specifically target turning difficulty. Turning difficulties, including increased time to turn and increased number of steps to turn, are present even when individuals with PD are on PD medications [5–10]. Stepping in place on the rotating treadmill has been recommended as a possible rehabilitation option for those with PD [11]. After stepping in place on the rotating treadmill, healthy controls and people with PD show a rotational adaptation response known as podokinetic after-rotation [12–14]. The kinematics of podokinetic after-rotation are similar to those seen during normal in-place turning [11]. It has been suggested that the rotating treadmill may improve turns by serving as an external cue to promote the correct motor programs for successful turning [11]. Immediately after stepping in place on a rotating disk for a total of 15 minutes on one day, turning performance was improved in two people with PD on medication who also

References

[1]  B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001.
[2]  A. Nieuwboer, W. de Weerdt, R. Dom, and E. Lesaffre, “A frequency and correlation analysis of motor deficits in Parkinson patients,” Disability and Rehabilitation, vol. 20, no. 4, pp. 142–150, 1998.
[3]  E. L. Stack, A. M. Ashburn, and K. E. Jupp, “Strategies used by people with Parkinson's disease who report difficulty turning,” Parkinsonism and Related Disorders, vol. 12, no. 2, pp. 87–92, 2006.
[4]  B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi, “Falls and freezing of Gait in Parkinson's disease: a review of two interconnected, episodic phenomena,” Movement Disorders, vol. 19, no. 8, pp. 871–884, 2004.
[5]  P. Crenna, I. Carpinella, M. Rabuffetti et al., “The association between impaired turning and normal straight walking in Parkinson's disease,” Gait and Posture, vol. 26, no. 2, pp. 172–178, 2007.
[6]  M. E. Morris, F. Huxham, J. McGinley, K. Dodd, and R. Iansek, “The biomechanics and motor control of gait in Parkinson disease,” Clinical Biomechanics, vol. 16, no. 6, pp. 459–470, 2001.
[7]  E. Stack and A. Ashburn, “Dysfunctional turning in Parkinson's disease,” Disability and Rehabilitation, vol. 30, no. 16, pp. 1222–1229, 2008.
[8]  I. Carpinella, P. Crenna, E. Calabrese et al., “Locomotor function in the early stage of Parkinson's disease,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 4, pp. 543–551, 2007.
[9]  J. E. Visser, N. C. Voermans, L. B. O. Nijhuis et al., “Quantification of trunk rotations during turning and walking in Parkinson's disease,” Clinical Neurophysiology, vol. 118, no. 7, pp. 1602–1606, 2007.
[10]  M. Ferrarin, I. Carpinella, M. Rabuffetti, E. Calabrese, P. Mazzoleni, and R. Nemni, “Locomotor disorders in patients at early stages of parkinson's disease: a quantitative analysis,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 1224–1227, New York, NY, USA, September 2006.
[11]  G. M. Earhart and M. Hong, “Kinematics of podokinetic after-rotation: similarities to voluntary turning and potential clinical implications,” Brain Research Bulletin, vol. 70, no. 1, pp. 15–21, 2006.
[12]  C. R. Gordon, W. A. Fletcher, G. Melvill Jones, and E. W. Block, “Adaptive plasticity in the control of locomotor trajectory,” Experimental Brain Research, vol. 102, no. 3, pp. 540–545, 1995.
[13]  K. D. Weber, W. A. Fletcher, C. R. Gordon, G. Melvill Jones, and E. W. Block, “Motor learning in the 'podokinetic' system and its role in spatial orientation during locomotion,” Experimental Brain Research, vol. 120, no. 3, pp. 377–385, 1998.
[14]  M. Hong, J. S. Perlmutter, and G. M. Earhart, “Podokinetic after-rotation in Parkinson disease,” Brain Research, vol. 1128, no. 1, pp. 99–106, 2007.
[15]  M. Hong and G. M. Earhart, “Rotating treadmill training reduces freezing in Parkinson disease: preliminary observations,” Parkinsonism and Related Disorders, vol. 14, no. 4, pp. 359–363, 2008.
[16]  B. A. Racette, M. Rundle, A. Parsian, and J. S. Perlmutter, “Evaluation of a screening questionnaire for genetic studies of Parkinson's disease,” American Journal of Medical Genetics, vol. 88, no. 5, pp. 539–543, 1999.
[17]  C. G. Goetz, B. C. Tilley, S. R. Shaftman et al., “Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results,” Movement Disorders, vol. 23, no. 15, pp. 2129–2170, 2008.
[18]  A. E. Patla, A. Adkin, and T. Ballard, “Online steering: coordination and control of body center of mass, head and body reorientation,” Experimental Brain Research, vol. 129, no. 4, pp. 629–634, 1999.
[19]  J. R. Fuller, A. L. Adkin, and L. A. Vallis, “Strategies used by older adults to change travel direction,” Gait and Posture, vol. 25, no. 3, pp. 393–400, 2007.
[20]  R. Grasso, C. Assaiante, P. Prévost, and A. Berthoz, “Development of anticipatory orienting strategies during locomotor tasks in children,” Neuroscience and Biobehavioral Reviews, vol. 22, no. 4, pp. 533–539, 1998.
[21]  M. A. Hollands, A. E. Patla, and J. N. Vickers, “"Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion,” Experimental Brain Research, vol. 143, no. 2, pp. 221–230, 2002.
[22]  M. A. Hollands, N. V. Ziavra, and A. M. Bronstein, “A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements,” Experimental Brain Research, vol. 154, no. 2, pp. 261–266, 2004.
[23]  G. Courtine and M. Schieppati, “Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision,” European Journal of Neuroscience, vol. 18, no. 1, pp. 177–190, 2003.
[24]  S. B. Akram, J. S. Frank, and J. Fraser, “Effect of walking velocity on segment coordination during pre-planned turns in healthy older adults,” Gait and Posture, vol. 32, no. 2, pp. 211–214, 2010.
[25]  M. Hong, J. S. Perlmutter, and G. M. Earhart, “A kinematic and electromyographic analysis of turning in people with Parkinson disease,” Neurorehabilitation and Neural Repair, vol. 23, no. 2, pp. 166–176, 2009.
[26]  A. C. Lo, V. C. Chang, M. A. Gianfrancesco, J. H. Friedman, T. S. Patterson, and D. F. Benedicto, “Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 51, 2010.
[27]  N. Giladi, D. McMahon, S. Przedborski et al., “Motor blocks in Parkinson's disease,” Neurology, vol. 42, no. 2, pp. 333–339, 1992.
[28]  F. B. Horak, J. G. Nutt, and L. M. Nashner, “Postural inflexibility in parkinsonian subjects,” Journal of the Neurological Sciences, vol. 111, no. 1, pp. 46–58, 1992.
[29]  R. Inzelberg, M. Plotnik, T. Flash, E. Schechtman, I. Shahar, and A. D. Korczyn, “Mental and motor switching in Parkinson's disease,” Journal of Motor Behavior, vol. 33, no. 4, pp. 377–385, 2001.
[30]  N. Giladi, H. Shabtai, E. S. Simon, S. Biran, J. Tal, and A. D. Korczyn, “Construction of freezing of gait questionnaire for patients with Parkinsonism,” Parkinsonism and Related Disorders, vol. 6, no. 3, pp. 165–170, 2000.
[31]  G. Frazzitta, R. Maestri, D. Uccellini, G. Bertotti, and P. Abelli, “Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training,” Movement Disorders, vol. 24, no. 8, pp. 1139–1143, 2009.
[32]  O. Bello, J. A. Sanchez, and M. Fernandez-del-Olmo, “Treadmill walking in Parkinson's disease patients: adaptation and generalization effect,” Movement Disorders, vol. 23, no. 9, pp. 1243–1249, 2008.
[33]  I. Miyai, Y. Fujimoto, Y. Ueda et al., “Treadmill training with body weight support: its effect on Parkinson's disease,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 7, pp. 849–852, 2000.
[34]  M. Pohl, G. Rockstroh, S. Rückriem, G. Mrass, and J. Mehrholz, “Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson's disease,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 12, pp. 1760–1766, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133