Introduction. Dopamine-replacement medications may improve mobility while not improving responses to postural challenges and could therefore increase fall risk. The purpose of this study was to measure reactive postural responses and gait-related mobility of patients with PD during ON and OFF medication conditions. Methods. Reactive postural responses to the Pull Test and performance of the Functional Gait Assessment (FGA) were recorded from 15 persons with PD during ON and OFF medication conditions. Results. Persons with PD demonstrated no significant difference in the reactive postural responses between medication conditions but demonstrated significantly better performance on the FGA when ON medications compared to OFF. Discussion/Conclusion. Dopamine-replacement medications alone may improve gait-related mobility without improvements in reactive postural responses and therefore could result in iatrogenic increases in fall risk. Rehabilitation providers should be aware of the side effects and limitations of medication treatment and implement interventions to improve postural responses. 1. Introduction Parkinson disease (PD) is the most prominent of the hypokinetic disorders [1, 2]. The cardinal features of PD are tremor at rest, rigidity, hypokinesia, and postural instability [3, 4]. Postural instability and falls constitute major reasons for the serious complications in advanced PD [5, 6]. Falls are associated with high morbidity, mortality [7], and diminished quality of life [8, 9]. Current estimates report that up to 70% of those with PD fall each year, and 13% fall more than once a week [5, 10]. The majority of persons with PD will be treated with dopamine-replacement medications and the benefits of these medications on overall motor function and mobility are well established [11, 12]. However, limitations of dopamine replacement do exist. One of these limitations is the minimal effect of dopamine-replacement medications on postural instability [13–15]. Coupling the benefits of increased gait-related mobility and the limitation that postural instability is dopamine-resistant raises the possibility that fall risk may increase through increased exposure to postural challenges. With such a high incidence of falls and the apparent dopamine-resistant nature of postural instability, an understanding of the extent and character of how postural responses and gait-related mobility respond to dopamine-replacement medication is critical for optimal rehabilitative treatment. Despite the apparent paradox between dopamine replacment effects on postural
References
[1]
J. Nolte, The Human Brain: An Introduction to Its Functional Anatomy, Elsevier, Philadelphia, Pa, USA, 6th edition, 2009.
[2]
J. Sian, M. Gerlach, M. B. H. Youdim, and P. Riederer, “Parkinson's disease: a major hypokinetic basal ganglia disorder,” Journal of Neural Transmission, vol. 106, no. 5-6, pp. 443–476, 1999.
[3]
A. L. Hunt and K. D. Sethi, “The pull test: a history,” Movement Disorders, vol. 21, no. 7, pp. 894–899, 2006.
[4]
J. Jankovic, “Parkinson's disease: clinical features and diagnosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 368–376, 2008.
[5]
P. Valkovic, H. Bro?ová, K. B?tzel, E. R??i?ka, and J. Benetin, “Push and release test predicts better Parkinson fallers and nonfallers than the pull test: comparison in OFF and ON medication states,” Movement Disorders, vol. 23, no. 10, pp. 1453–1457, 2008.
[6]
O. H. Gerlach, A. Winogrodzka, and W. E. Weber, “Clinical problems in the hospitalized Parkinson's disease patient: systematic review,” Movement Disorders, vol. 26, no. 2, pp. 197–208, 2011.
[7]
C. J. Hass, B. R. Bloem, and M. S. Okun, “Pushing or pulling to predict falls in Parkinson disease?” Nature Clinical Practice Neurology, vol. 4, no. 10, pp. 530–531, 2008.
[8]
K. C. Stewart, H. H. Fernandez, M. S. Okun, C. E. Jacobson, and C. J. Hass, “Distribution of motor impairment influences quality of life in Parkinson's disease,” Movement Disorders, vol. 23, no. 10, pp. 1466–1468, 2008.
[9]
T. Ellis, J. T. Cavanaugh, G. M. Earhart, M. P. Ford, K. B. Foreman, and L. E. Dibble, “Which measures of physical function and motor impairment best predict quality of life in Parkinson's disease?” Parkinsonism and Related Disorders, vol. 17, no. 9, pp. 693–697, 2011.
[10]
B. H. Wood, J. A. Bilclough, A. Bowron, and R. W. Walker, “Incidence and prediction of falls in Parkinson's disease: a prospective multidisciplinary study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 721–725, 2002.
[11]
N. I. Bohnen and R. Cham, “Postural control, gait, and dopamine functions in parkinsonian movement disorders,” Clinics in Geriatric Medicine, vol. 22, no. 4, pp. 797–812, 2006.
[12]
L. Rochester, K. Baker, A. Nieuwboer, and D. Burn, “Targeting dopa-sensitive and dopa-resistant gait dysfunction in Parkinson's disease: selective responses to internal and external cues,” Movement Disorders, vol. 26, no. 3, pp. 430–435, 2011.
[13]
B. R. Bloem, D. J. Beckley, J. G. Van Dijk, A. H. Zwinderman, M. P. Remler, and R. A. C. Roos, “Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson's disease,” Movement Disorders, vol. 11, no. 5, pp. 509–521, 1996.
[14]
F. B. Horak, J. Frank, and J. Nutt, “Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone,” Journal of Neurophysiology, vol. 75, no. 6, pp. 2380–2396, 1996.
[15]
E. Tunik, A. G. Feldman, and H. Poizner, “Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts,” Parkinsonism and Related Disorders, vol. 13, no. 7, pp. 425–433, 2007.
[16]
I. Benatru, M. Vaugoyeau, and J. P. Azulay, “Postural disorders in Parkinson's disease,” Neurophysiologie Clinique, vol. 38, no. 6, pp. 459–465, 2008.
[17]
S. Fahn and R. L. Elton, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, and D. B. Caine, Eds., chapter 4, pp. 153–163, Mac Millan Health Care Information, Florham Park, NJ, USA, 1987.
[18]
K. B. Foreman, O. Addison, H. S. Kim, and L. E. Dibble, “Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing,” Parkinsonism and Related Disorders, vol. 17, no. 3, pp. 166–171, 2011.
[19]
M. Visser, J. Marinus, B. R. Bloem, H. Kisjes, B. M. Van Den Berg, and J. J. Van Hilten, “Clinical tests for the evaluation of postural instability in patients with Parkinson's disease,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 11, pp. 1669–1674, 2003.
[20]
J. T. Cavanaugh, K. L. Coleman, J. M. Gaines, L. Laing, and M. C. Morey, “Using step activity monitoring to characterize ambulatory activity in community-dwelling older adults,” Journal of the American Geriatrics Society, vol. 55, no. 1, pp. 120–124, 2007.
[21]
J. T. Cavanaugh, N. Kochi, and N. Stergiou, “Nonlinear analysis of ambulatory activity patterns in community-dwelling older adults,” Journals of Gerontology Series A, vol. 65, no. 2, pp. 197–203, 2010.
[22]
J. M. Hausdorff, “Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling,” Chaos, vol. 19, no. 2, Article ID 026113, 2009.
[23]
A. Salarian, H. Russmann, F. J. G. Vingerhoets, P. R. Burkhard, and K. Aminian, “Ambulatory monitoring of physical activities in patients with Parkinson's disease,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 12, pp. 2296–2299, 2007.
[24]
N. Noury, A. Fleury, P. Rumeau et al., “Fall detection—principles and methods,” Conference Proceedings—IEEE Engineering in Medicine and Biology Society, vol. 2007, pp. 1663–1666, 2007.
[25]
D. M. Wrisley, G. F. Marchetti, D. K. Kuharsky, and S. L. Whitney, “Reliability, internal consistency, and validity of data obtained with the functional gait assessment,” Physical Therapy, vol. 84, no. 10, pp. 906–918, 2004.
[26]
A. Degardin, E. Houdayer, J. L. Bourriez et al., “Deficient “sensory” beta synchronization in Parkinson's disease,” Clinical Neurophysiology, vol. 120, no. 3, pp. 636–642, 2009.
[27]
J. V. Jacobs and F. B. Horak, “Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson's disease,” Neuroscience, vol. 141, no. 2, pp. 999–1009, 2006.
[28]
J. Konczak, D. M. Corcos, F. Horak et al., “Proprioception and motor control in parkinson's disease,” Journal of Motor Behavior, vol. 41, no. 6, pp. 543–552, 2009.
[29]
A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 102–113, 2011.
[30]
H. Thieme, C. Ritschel, and C. Zange, “Reliability and validity of the functional gait assessment (German version) in subacute stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 9, pp. 1565–1570, 2009.
[31]
J. W. Langston, H. Widner, C. G. Goetz et al., “Core assessment program for intracerebral transplantations (CAPIT),” Movement Disorders, vol. 7, no. 1, pp. 2–13, 1992.
[32]
C. G. Goetz, W. Poewe, O. Rascol et al., “Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations,” Movement Disorders, vol. 19, no. 9, pp. 1020–1028, 2004.
[33]
C. G. Goetz, W. Poewe, O. Rascol, and C. Sampaio, “Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease: 2001 to 2004,” Movement Disorders, vol. 20, no. 5, pp. 523–539, 2005.
[34]
J. M. Miyasaki, W. Martin, O. Suchowersky, W. J. Weiner, and A. E. Lang, “Practice parameter: initiation of treatment for Parkinson's disease: an evidence-based review: report of the quality standards subcommittee of the American Academy of Neurology,” Neurology, vol. 58, no. 1, pp. 11–17, 2002.
[35]
N. Shivitz, M. M. Koop, J. Fahimi, G. Heit, and H. M. Bronte-Stewart, “Bilateral subthalamic nucleus deep brain stimulation improves certain aspects of postural control in Parkinson's disease, whereas medication does not,” Movement Disorders, vol. 21, no. 8, pp. 1088–1097, 2006.
[36]
B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001.
[37]
J. V. Jacobs, F. B. Horak, K. Van Tran, and J. G. Nutt, “An alternative clinical postural stability test for patients with Parkinson's disease,” Journal of Neurology, vol. 253, no. 11, pp. 1404–1413, 2006.
[38]
F. B. Horak, D. M. Wrisley, and J. Frank, “The balance evaluation systems test (BESTest) to differentiate balance deficits,” Physical Therapy, vol. 89, no. 5, pp. 484–498, 2009.
[39]
L. E. Dibble, J. Christensen, D. J. Ballard, and K. B. Foreman, “Diagnosis of fall risk in Parkinson disease: an analysis of individual and collective clinical balance test interpretation,” Physical Therapy, vol. 88, no. 3, pp. 323–332, 2008.
[40]
L. E. Dibble, O. Addison, and E. Papa, “The effects of exercise on balance in persons with parkinson's disease: a systematic review across the disability spectrum,” Journal of Neurologic Physical Therapy, vol. 33, no. 1, pp. 14–26, 2009.
[41]
M. Jobges, G. Heuschkel, C. Pretzel, C. Illhardt, C. Renner, and H. Hummelsheim, “Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 12, pp. 1682–1687, 2004.