Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[2]
Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review of plant physiology, 1980, 31(1): 149-190.
[3]
Marschner H. Mineral nutrition of higher plants [M]. London: Academic Press, 1995.
[4]
Sibole J V, Montero E, Cabot C et al. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum, 1998, 104(3): 299-305.
[5]
Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
[6]
Amthor J S. The role of maintenance respiration in plant growth[J]. Plant, Cell & Environment, 1984, 7(8): 561-569.
[7]
Ashraf M, Wu L. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(1): 17-42.
[8]
Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
[9]
陆景陵. 植物营养学[M]. 北京: 中国农业大学出版社, 2003.
[10]
Haynes R J, Goh K M. Ammonium and nitrate nutrition of plants[J]. Biological Reviews, 1978, 53(4): 465-510.
[11]
Alyemeni M N. Growth response of Vigna ambacensis L. seedling to the interaction between nitrogen source and salt stress[J]. Pakistan Journal of Botany, 1997, 29(2): 323-330.
[12]
Wilcox G E, Hoff J E, Jones C M. Ammonium reduction of calcium and magnesium content of tomato and sweet corn leaf tissue and influence on incidence of blossom end rot of tomato fruit[J]. Plant Disease, 1973,65(10): 821-822.
[13]
Polizotto K R, Wilcox G E, Jones C M. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen[J]. Journal of America Society for Horticultural Science, 1975, 100(2): 165-168.
[14]
Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. I. Ion concentrations in roots and leaves[J]. Plant, Cell & Environment, 1994, 17(11): 1215-1221.
[15]
Botella M A, Martínez V, Nieves M et al. Effect of salinity on the growth and nitrogen uptake by wheat seedlings[J]. Journal of Plant Nutrition, 1997, 20(6): 793-804.
[16]
Lewis O A M, Leidi E O, Lips S H. Effect of nitrogen source on growth response to salinity stress in maize and wheat[J]. New Phytologist, 1989, 111(2): 155-160.
[17]
Ali A, Tucker T C, Thompson T L et al. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley[J]. Journal of Agronomy & Crop Science, 2001, (186), 223-228.
[18]
Frechilla S, Lasa B, Ibarretxe L et al. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate)[J]. Plant Growth Regulation, 2001, 35(2): 171-179.
[19]
Kafkafi U, Valoras N, Letey J. Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.)[J]. Journal of Plant Nutrition, 1982, 5(12): 1369-1385.
[20]
Leidi E O, Silberbush M, Lips S H. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition[J]. Journal of Plant Nutrition, 1991, 14(3): 235-246.
[21]
Pessarakli M, Tucker T C. Ammonium (15N) metabolism in cotton under salt stress[J]. Journal of plant nutrition, 1985, 8(11): 1025-1045.
[22]
Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell & Environment, 1998, 21(12): 1255-1263.
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.
Alfocea F P, Balibrea M E, Alarcón J J et al. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species[J]. Journal of Plant Physiology, 2000, 156(3): 367-374.
[30]
陈平平. 硅在水稻生活中的作用[J]. 生物学通报, 1998, 33(8): 5-7.
[31]
Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings[J]. Journal of Plant Physiology, 2006, 163(1): 11-18.
[32]
Rios-Gonzalez K, Erdei L, Lips S H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources[J]. Plant Science, 2002, 162(6): 923-930.
[33]
Speer M, Kaiser W M. Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity[J]. Plant Physiology, 1991, 97(3): 990-997.
[34]
Zheng Q, Liu L, Liu Z et al. Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6): 875-883.
[35]
Ashraf M, Sultana R. Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants[J]. Biologia Plantarum, 2000, 43(4): 615-619.
[36]
Davenport R, James R A, Zakrisson-Plogander A et al. Control of sodium transport in durum wheat[J]. Plant Physiology, 2005, 137(3): 807-818.
[37]
Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669.
[38]
Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
[39]
Apse M P, Aharon G S, Snedden W A et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
[40]
Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19(8): 765-768.
[41]
Berthomieu P, Conéjéro G, Nublat A et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9): 2004-2014.
[42]
Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.