全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响

DOI: 10.11674/zwyf.2015.0120, PP. 181-189

Keywords: 油菜,水稻,氮素形态,盐胁迫,离子运输,离子积累

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】土壤盐碱化是制约农作物产量的主要因素之一,盐胁迫影响养分运输和分布,造成植物营养失衡,导致作物发育迟缓,植株矮小,严重威胁着我国的粮食生产。在必需营养元素中,氮素是需求量最大的元素,NO-3和NH+4是植物吸收氮素的两种离子形态。植物对盐胁迫的响应受到不同形态氮素的调控,研究不同形态氮素营养下植物的耐盐机制对提高植物耐盐性及产量具有重要的意义。【方法】本文以喜硝植物油菜(BrassicanapusL.)和喜铵植物水稻(OryzasativaL.)为试验材料,采用室内营养液培养方法,研究了NO-3和NH+4对NaCl胁迫下油菜及水稻苗期生长状况、对Na+运输和积累的影响,以对照与盐胁迫植株生物量之差与Na+积累量之差的比值,评估Na+对植株的伤害程度。【结果】1)在非盐胁迫条件下,硝态氮营养显著促进油菜和水稻根系的生长;盐胁迫条件下,油菜和水稻生物量均显著受到抑制,NaCl对供应铵态氮营养植株的抑制更为显著。2)盐胁迫条件下,两种供氮形态下,油菜和水稻植株Na+含量均显著增加,硝态氮营养油菜叶柄Na+显著高于铵态氮营养,叶柄Na+含量/叶片Na+含量大于铵营养油菜,硝态氮营养水稻根系Na+含量显著低于铵营养,地上部则相反。3)铵营养油菜和水稻Na+伤害度显著高于硝营养植株。4)盐胁迫条件下,硝态氮营养油菜地上部和水稻根系K+含量均显著高于铵态氮营养。5)盐胁迫条件下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株。【结论】与铵营养相比,硝营养油菜和水稻具有更好的耐盐性。硝态氮处理油菜叶柄Na+显著高于铵态氮处理,能够截留Na+向叶片运输。同时,供应硝态氮营养更有利于油菜和水稻吸收K+,有助于维持植物体内离子平衡。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,表明硝态氮营养油菜和水稻木质部-韧皮部对离子有较好的调控能力,是其耐盐性高于铵营养的原因之一。

References

[1]  Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[2]  Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review of plant physiology, 1980, 31(1): 149-190.
[3]  Marschner H. Mineral nutrition of higher plants [M]. London: Academic Press, 1995.
[4]  Sibole J V, Montero E, Cabot C et al. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum, 1998, 104(3): 299-305.
[5]  Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
[6]  Amthor J S. The role of maintenance respiration in plant growth[J]. Plant, Cell & Environment, 1984, 7(8): 561-569.
[7]  Ashraf M, Wu L. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(1): 17-42.
[8]  Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
[9]  陆景陵. 植物营养学[M]. 北京: 中国农业大学出版社, 2003.
[10]  Haynes R J, Goh K M. Ammonium and nitrate nutrition of plants[J]. Biological Reviews, 1978, 53(4): 465-510.
[11]  Alyemeni M N. Growth response of Vigna ambacensis L. seedling to the interaction between nitrogen source and salt stress[J]. Pakistan Journal of Botany, 1997, 29(2): 323-330.
[12]  Wilcox G E, Hoff J E, Jones C M. Ammonium reduction of calcium and magnesium content of tomato and sweet corn leaf tissue and influence on incidence of blossom end rot of tomato fruit[J]. Plant Disease, 1973,65(10): 821-822.
[13]  Polizotto K R, Wilcox G E, Jones C M. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen[J]. Journal of America Society for Horticultural Science, 1975, 100(2): 165-168.
[14]  Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. I. Ion concentrations in roots and leaves[J]. Plant, Cell & Environment, 1994, 17(11): 1215-1221.
[15]  Botella M A, Martínez V, Nieves M et al. Effect of salinity on the growth and nitrogen uptake by wheat seedlings[J]. Journal of Plant Nutrition, 1997, 20(6): 793-804.
[16]  Lewis O A M, Leidi E O, Lips S H. Effect of nitrogen source on growth response to salinity stress in maize and wheat[J]. New Phytologist, 1989, 111(2): 155-160.
[17]  Ali A, Tucker T C, Thompson T L et al. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley[J]. Journal of Agronomy & Crop Science, 2001, (186), 223-228.
[18]  Frechilla S, Lasa B, Ibarretxe L et al. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate)[J]. Plant Growth Regulation, 2001, 35(2): 171-179.
[19]  Kafkafi U, Valoras N, Letey J. Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.)[J]. Journal of Plant Nutrition, 1982, 5(12): 1369-1385.
[20]  Leidi E O, Silberbush M, Lips S H. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition[J]. Journal of Plant Nutrition, 1991, 14(3): 235-246.
[21]  Pessarakli M, Tucker T C. Ammonium (15N) metabolism in cotton under salt stress[J]. Journal of plant nutrition, 1985, 8(11): 1025-1045.
[22]  Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell & Environment, 1998, 21(12): 1255-1263.
[23]  戴廷波, 曹卫星, 李存东. 作物增铵营养的生理效应[J]. 植物生理学通讯, 1998, 34(6): 488-493.
[24]  Barker A V, Mills H A. Ammonium and nitrate nutrition of horticultural crops[J]. Horticultural Reviews,1980, 2: 395-423.
[25]  杨瑛, 马梅, 郑青松, 等. 不同供氮形态下油菜幼苗对盐胁迫的响应[J]. 植物营养与肥料学报, 2012, 18(5): 1229-1236.
[26]  严小龙, 郑少玲, 连兆煌. 水稻耐盐机理的研究Ⅰ. 不同基因型植株水平耐盐性初步比较[J]. 华南农业大学学报(自然科学版), 1992,13(4): 6-11.
[27]  Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.
[28]  宋娜, 郭世伟, 沈其荣. 不同氮素形态及水分胁迫对水稻苗期水分吸收, 光合作用及生长的影响[J]. 植物学通报, 2007, 24(4): 477-483.
[29]  Alfocea F P, Balibrea M E, Alarcón J J et al. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species[J]. Journal of Plant Physiology, 2000, 156(3): 367-374.
[30]  陈平平. 硅在水稻生活中的作用[J]. 生物学通报, 1998, 33(8): 5-7.
[31]  Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings[J]. Journal of Plant Physiology, 2006, 163(1): 11-18.
[32]  Rios-Gonzalez K, Erdei L, Lips S H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources[J]. Plant Science, 2002, 162(6): 923-930.
[33]  Speer M, Kaiser W M. Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity[J]. Plant Physiology, 1991, 97(3): 990-997.
[34]  Zheng Q, Liu L, Liu Z et al. Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6): 875-883.
[35]  Ashraf M, Sultana R. Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants[J]. Biologia Plantarum, 2000, 43(4): 615-619.
[36]  Davenport R, James R A, Zakrisson-Plogander A et al. Control of sodium transport in durum wheat[J]. Plant Physiology, 2005, 137(3): 807-818.
[37]  Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669.
[38]  Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
[39]  Apse M P, Aharon G S, Snedden W A et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
[40]  Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19(8): 765-768.
[41]  Berthomieu P, Conéjéro G, Nublat A et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9): 2004-2014.
[42]  Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133