全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

根际促生菌BacillussubtilisY-IVI在香草兰上的应用效果研究

DOI: 10.11674/zwyf.2015.0230, PP. 535-540

Keywords: 香草兰,根际促生菌,生物有机肥,尖孢镰刀菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】香草兰为多年生热带经济作物,随着种植年限的增加,植株长势弱,土壤有益微生物减少,土壤微生物区系失衡,严重制约了香草兰产业的可持续发展。枯草芽孢杆菌作为一种根际促生菌,被广泛应用于促进作物生长,改善土壤微生物环境。本文将枯草芽孢杆菌Y-IVI接种在有机肥上,生产了生物有机肥,并就该生物有机肥对香草兰生长的影响进行了研究。【方法】采用温室盆栽试验,调查施用根际促生菌枯草芽孢杆菌(Bacillussubtilis)Y-IVI及其经固体发酵制得的微生物有机肥料(Y-IVI:3×108cfu/g)后,香草兰植株地上部及根系的生长状况,采用选择性培养基方法研究了Y-IVI在香草兰根际土壤中的定殖能力及对香草兰根茎腐病致病菌-尖孢镰刀菌数量的影响。【结果】施用Y-IVI及BIO4个月后,香草兰根际土壤Y-IVI数量仍可达到106cfu/g土,二者无显著差异,在处理OF和对照中未检测到菌株Y-IVI。施用生物有机肥香草兰地上部干重和根系干重均显著高于对照,分别增加了63.1%和59.4%,与不接种Y-IVI的有机肥处理(OF)相比,地上部干重显著提高了43.2%,根系干重提高了18%,差异不显著;施用Y-IVI菌液的处理植株地上部干重和根系干重均高于对照,但无显著性差异;处理BIO根系直径、根系表面积和总体积与对照相比分别增加了41.9%、88.9%和80.4%,均显著高于对照,总根长与对照差异不显著;处理BIO根系表面积和总体积与有机肥处理OF相比分别显著增加了41.9%和30.8%,根系直径与OF相比增加了10.1%,差异不显著;处理Y-IVI根系直径与对照相比显著增加了25.5%,但根系表面积和总体积与对照差异不显著;与对照相比,施用BIO及Y-IVI的处理根际土壤尖孢镰刀菌数量分别明显降低了52.2%和41.8%,施用有机肥OF的处理降低了10%,差异不显著。【结论】Y-IVI可稳定定殖于香草兰根际土壤对其生长起有益作用,含促生菌Y-IVI的生物有机肥料比单独使用促生菌菌液可以更有效地减少根际土壤中尖孢镰刀菌数量,降低连作生物障碍。施用生物有机肥料比施用化肥和有机肥更有效地促进香草兰地上部及根系生长,因此,施用由根际促生菌枯草芽孢杆菌(Bacillussubtilis)Y-IVI制得的生物有机肥是解决香草兰连作生物障碍和提高收益的有效手段。

References

[1]  王庆煌, 宋应辉, 陈封宝, 等. 香草兰高产栽培技术研究[J]. 热带农业科学, 1994, 2: 50-57.
[2]  Gerasimov A V, Gornova N V, Rudometova N V et al. Determination of vanillin and ethylvanillin in vanilla flavorings by planar (Thin-Layer) chromatography[J]. Journal of Analytical Chemistry, 2003, 58 (7): 677-684.
[3]  赵青云, 王辉, 王华, 等. 种植年限对香草兰生理指标及土壤微生物区系的影响[J]. 热带作物学报, 2012, 33(9): 1562-1567.
[4]  Zaidi S, Usmani S, Singh B R et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere, 2006, 64: 991-997.
[5]  Han J G, Sun L, Dong X Z et al. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens[J]. Systematic and Applied Microbiology, 2005, 28: 66-76.
[6]  Chatterton S, Jayaraman J, Punja Z K. Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulate[J]. Biological Control, 2008, 46: 267-278.
[7]  Zhao Q Y, Shen Q R, Ran W et al. Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.)[J]. Biology and Fertility of Soils, 47: 507-514.
[8]  Zhao Q Y, Ran W, Wang H et al. Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI[J]. BioControl, 2013, 58: 283-292.
[9]  Turner J T, Backman P A. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis[J]. Plant Disease, 1991, 75: 347-353.
[10]  Kinsella K, Schulthess C P, Morris T F et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41: 374-379.
[11]  Pang Y D, Liu X G, Ma Y X et al. Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones[J]. European Journal of Plant Pathology, 2009, 124: 261-268.
[12]  Zhang N, Wu K, He X et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11[J]. Plant and Soil, 2011, 344: 87-97.
[13]  Huang X Q, Zhang N, Yong X Y et al. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43[J]. Microbiology Research, 2012, 167: 135-143.
[14]  Ren X L, Zhang N, Cao M H et al. Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5[J]. Biology and Fertility of Soils, 2012, 48: 613-620.
[15]  Wei Z, Yang X M, Yin S X et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology, 2011, 48: 152-159.
[16]  Wang B B, Yuan J, Zhang J et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana[J]. Biology and Fertility of Soils, 2013, 49: 435-447.
[17]  Zhao Q Y, Dong C X, Yang X M et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology, 2011, 47: 67-75.
[18]  Karlidag H, Esitken A, Turan M et al. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple[J]. Scientia Horticulturae, 2007, 114: 16-20.
[19]  Niranjan Raj S, Deepaka S A, Basavarajua P et al. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet[J]. Crop Protection, 2003, 22: 579-588.
[20]  Ling N, Xue C, Huang Q W et al. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt[J]. Biocontrol, 2010, 55: 673-683.
[21]  Wang B B, Yuan J, Zhang J et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana[J]. Biology and Fertility of Soils, 2013, 49(4): 435-446.
[22]  Bolwerk A, Lagopodi A L, Lugtenberg B J. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot[J]. Molecular Plant-microbe Interactions, 2005, 18: 710-721.
[23]  Muslim A, Horinouchi H, Hyakumachi M. Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions[J]. Mycoscience, 2003, 44: 77-84.
[24]  梅新兰, 赵青云, 谭石勇, 等. 辣椒疫病拮抗菌株筛选、鉴定及其防效[J]. 应用生态学报, 2010, 21(10): 2652-2658.
[25]  Luo J, Ran W, Hu J et al. Application of bio-organic fertilizer significantly affected fungal diversity of soils[J]. Soil Science Society of America Journal, 2010, 74: 2039-2048.
[26]  Ling N, Zhang W W, Tan S Y et al. Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp. niveum and its antagonistic bacterium in the rhizosphere of watermelon[J]. Applied Soil Ecology, 2012, 59: 13-19.
[27]  陈中义, 张 杰, 黄大昉, 等. 植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J]. 植物病理学报, 2003, 33(2): 97-103.
[28]  Weller D M. Biological control of soilborne pathogens in the rhizosphere with bacteria[J]. Annual Review of Phytopathology, 1988, 26: 379-407.
[29]  Cao Y, Zhang Z Z, Ling N et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils, 2011, 47: 495-506.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133