全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同温度制备的棉花秸秆生物碳对棉花生长及氮肥利用率(15N)的影响

DOI: 10.11674/zwyf.2015.0306, PP. 600-607

Keywords: 生物碳,制备温度,棉花,氮素吸收,氮肥利用率

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】生物碳可提高土壤肥力,增强土壤对养分的保持能力,减少养分损失,提高肥料利用率。研究不同温度热解制备的生物碳对棉花生长和肥料利用率的差异,可以为提高生物碳的有效利用提供依据。【方法】供试生物碳由棉花秸秆分别在450℃、600℃和750℃高温限氧条件下热解制备而成。本试验为两因素(生物碳、氮)温室盆栽试验,生物碳处理包括3种不同热解温度生物碳处理(分别以450BC、600BC、750BC表示)和1个空白对照(CK);每个生物碳土壤设置3个施氮水平0、2.1和4.2g/pot(分别以N0、N1、N2表示),用15N同位素示踪方法分析不同施氮水平下3种热解温度生物碳对棉花生长、15N回收和淋洗损失的影响。【结果】1)施用3种生物碳处理棉花干物质重总体表现为750BC>600BC、450BC>CK,450BC、600BC和750BC处理分别较对照平均增加了9.2%、12.6%和17.3%;并且棉花总干物质重随施氮量的增加而增加,但生物碳作用随之降低;2)3种生物碳处理棉花氮素吸收总量总体也表现为750BC>600BC、450BC>CK。不施氮肥条件下(N0),600BC和750BC处理棉花氮素吸收总量显著高于CK,但450BC处理与与CK无显著差异;施氮肥条件下(N1、N2),3种生物碳处理均显著高于CK,450BC、600BC和750BC处理棉花氮素吸收总量平均较CK分别增加29.5%、37.1%和48.8%;3)15N标记试验结果表明,450BC、600BC和750BC处理植株15N回收率显著高于对照,分别较CK平均提高27.46%、36.44%和42.87%。而N1和N2水平下3种生物碳处理之间植株15N回收率均没有显著差异;4)450BC、600BC和750BC处理土壤15N残留率分别较对照平均增加101.4%、147.3%和200.7%。土壤15N残留率在N1水平下随着生物碳热解温度的升高而增加,而在N2水平下750BC处理显著高于450BC和600BC处理,但是后二者之间没有显著差异。土壤15N残留率随着施氮量的增加而降低;5)施用生物碳可以显著降低土壤15N的淋洗,并且不同施氮水平下(N1、N2)淋洗率都随着生物碳热解温度的升高而降低。【结论】施用生物碳可促进棉花生长,增加棉花氮素吸收,提高氮肥利用率,降低氮素损失,并且生物碳的热解温度越高效果越明显;但是随着氮肥施用量的增加生物碳作用减弱。

References

[1]  林葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报, 1994, 1(1): 6-18.
[2]  张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战[J]. 中国农业科学, 2013,46(15): 3161-3171.
[3]  李庆逵, 朱兆良, 于天仁. 中国农业持续发展中的肥料问题[M]. 南京: 江苏科技出版社, 1998, 38-48.
[4]  Zimmerman A . Abiotic and microbial oxidation of laboratory-produced black carbon(biochar)[J]. Environmental Science and Technology, 2010, 44(4): 1295-1301.
[5]  Chan K Y, Xu Z H. Biochar: nutrient properties and their enhancement[J]. Lehmann J, Joseph S. Biochar for environmental management: science and technology [M]. London: Earthscan, 2009.
[6]  Rajkovich S, Enders A, Hanley K et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012,48(3): 271-284
[7]  张阿凤, 潘根兴, 李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学, 2009, 28(12): 2459-2463.
[8]  Liang B, Lehmann J, Solomon D et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 17: 19-30.
[9]  Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1-2): 1-18.
[10]  刘玉学. 生物质炭输入对土壤氮素流失及温室气体排放特性的影响[M]. 杭州: 浙江大学博士学位论文,2011.
[11]  Taghizadeh\|Toosi A, Clough T J, Sherlock R Ret al. Biochar adsorbed ammonia is bioavailable[J]. Plant and Soil, 2012, 350(1-2): 57-69.
[12]  张万杰, 李志芳, 张庆忠, 等. 生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J]. 农业环境科学, 2011, 30(10): 1946-1952.
[13]  Yu X Y, Ying G G, Kookana R S. Sorption and desorption behaviors of diuron in soils amended with charcoal[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 8545-8550.
[14]  Taghizadeh\|Toosi A, Clough T J, Sherlock R R et al. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability[J]. Plant and Soil, 2012, 353(1-2): 73-84.
[15]  Chen C R, Phillips I R, Condron L M et al. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand[J]. Plant and Soil, 2013, 367(1-2): 301-312.
[16]  Lehmann J, Silva Jr JP, Rondon M et al. Slash-and-char-a feasible alternative for soil fertility management in the Central Amazon?[Z]. Paper presented at the 17th World Congress of Soil Science, Bangkok, Thailand, 2002. No.499.
[17]  Mizuta K, Matsumoto T, Hatate Y et al. Removal of nitrate nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology, 2004, 95: 255-257.
[18]  Giles J. Nitrogen study fertilizes fears of pollution[J]. Nature, 2005, 433(7028): 791.
[19]  刘强, 宋海星, 荣湘民. 不同品种油菜氮效率差异及其生理基础研究[J].植物营养与肥料学报, 2008, 14(1): 113-119.
[20]  朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): l-6.
[21]  李贵桐, 赵紫娟, 黄元仿, 李保国. 秸秆还田对土壤氮素转化的影响[J]. 植物营养与肥料学报, 2002,8(2): 162-167.
[22]  Tu C, Ristaino J B, Hu S. Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching[J]. Soil Biology and Biochemistry, 2006, 38: 247-255.
[23]  董文旭, 胡春胜, 张玉铭. 不同施肥土壤对尿素NH3挥发的影响[J]. 干旱地区农业研究, 2005,23(2): 76-79.
[24]  Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Chance, 2006, 11(2): 395-419.
[25]  Lehmann J, Silva J P, Rondon M et al. Nutrient availability and leaching in an archaeological Anthorosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2002, 249: 343-357.
[26]  Ding Y, Liu Y X, Wu W X. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, and Soil Pollution, 2010, 1-4(213): 47-55.
[27]  Yao Y, Gao B, Zhang M et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89: 1467-1471.
[28]  Kameyama K, Miyamoto T, Shiono T, Shinogi Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil[J]. Journal of Environment Quality, 2012, 41: 1131-1137.
[29]  鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2008, 6.
[30]  曹亚澄, 钟明, 龚华,等. N2 O 产生法测定土壤无机态氮15 N丰度[J]. 土壤学报, 2013, 50(1): 113-119.
[31]  Zwieten L V, Kimber S, Morris S et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1-2): 235-246.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133