全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同施氮水平下生物碳提高棉花产量及氮肥利用率的作用

DOI: 10.11674/zwyf.2015.0326, PP. 782-791

Keywords: 生物碳,棉花秸秆,施氮水平,棉花产量,氮肥利用率

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】生物碳有很强的固碳能力,同时还可以改善土壤肥力,促进作物生长,提高养分利用效率。因此,本研究探究在不同施氮水平下棉花秸秆和棉花秸秆制备的生物碳还田对棉花产量及氮肥利用率的影响。【方法】采用2因素3水平完全设计田间试验方法。不同碳源处理为:棉花秸秆(ST,12t/hm2)、棉花秸秆制备的生物碳(BC,4.5t/hm2)和不施碳对照(CK),棉花秸秆和生物碳为等碳量(C1.2t/hm2)施用;3个氮肥用量水平为N:0、300、450kg/hm2(N0、N300、N450)。在棉花盛蕾期、初花期、盛花期、盛铃期、吐絮期采集植株样品,测定植株干物质重、氮素吸收量,在棉花吐絮期测定棉花产量。【结果】1)施用秸秆和生物碳均能显著增加棉花干物质重,促进棉花植株氮素吸收。在低氮肥水平下(N0),秸秆和生物碳处理间棉花干物质重、氮素吸收量差异不显著;在中氮肥水平下(N300),秸秆和生物碳处理棉花干物质差异不大,但生物碳处理氮素吸收量显著高于秸秆处理;在高氮肥水平下(N450),生物碳处理的棉花干物质重、氮素吸收均要显著高于秸秆处理。2)施用秸秆和生物碳均能显著增加棉花产量。在低氮肥水平下(N0),秸秆和生物碳处理的棉花产量差异不显著;而在中氮肥和高氮肥水平下(N300、N450),生物碳处理的棉花产量均显著高于秸秆处理。3)施用秸秆和生物碳处理的氮肥利用率在中氮肥水平下(N300)分别较对照增加12.2%和26.8%;在高氮肥水平下(N450),施用生物碳处理的棉花氮肥利用率较对照增加18.8%,而秸秆处理与对照差异不显著。【结论】生物碳和氮肥合理配施可以促进棉花生长,提高棉花产量,明显增加氮肥利用率。

References

[1]  Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[2]  Asai H, Samson B K, Stephan H M et al. Biochar amendment techniques for upland rice production in Northern Laos: 1. soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1): 81-84.
[3]  Maior J, Rondon M, Molina D et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1-2): 117-128.
[4]  Van Zwieten L, Kimber S, Morris S et al. Effect of biochar from slow pyrolysisi of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1-2): 235-246.
[5]  Yamato M, Okimori Y, Wibowo I F et al. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia[J]. Soil Science and Plant Nutrition, 2006, 52(4): 489-495.
[6]  张水清,钟旭华,黄农荣,等. 稻草覆盖还田对水稻氮素吸收和氮肥利用率的影响[J]. 中国生态农业学报,2010,18(3): 611-616.
[7]  张万杰,李志芳,张庆忠等.生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J].农业环境科学学报,2011, 30(10): 1946-1952.
[8]  Schulz H, Glaser B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3): 410-422.
[9]  Widowati U W H, Soehono L A, Guritno B. Effect of biochar on the release and loss of nitrogen from urea fertilization[J]. Journal of Agriculture and Food Technology, 2011, 1: 127-132.
[10]  Laird D A. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality[J]. Agronomy Journal, 2008, 100(1): 178-181.
[11]  Rajkovich S, Enders A, Hanley K et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J].Biology and Fertility of Soils, 2012, 48(3): 271-284.
[12]  孟军,陈温福. 中国生物炭研究及其产业发展趋势[J]. 沈阳农业大学学报(社会科学版),2013, 15(1): 1-5.
[13]  Robers K G, Gloy B A, Joseph S et al. Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential[J]. Environmental Science & Technology, 2009, 44(2): 827-833.
[14]  Shackley S, Hammond J, Gaunt J et al. The feasibility and costs of biochar deployment in the UK[J]. Carbon Management, 2011, 2(3): 335-356.
[15]  Zhang A F, Liu Y M, Pan G X et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1-2): 263-275.
[16]  Karhu K, Mattila T, Bergstrom I, Regina K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1): 309-313.
[17]  Vaccari F P, Baronti S, Lugato E et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 2011, 34(4): 231-238.
[18]  Brewer C E, Schmidt-Rohr K, Satrio J A et al. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 386-396.
[19]  Lee J W, Kidder M, Evans B R et al. Characterization of biochars produced from cronstovers for soil amendment[J]. Environment Science & Technology, 2010, 44(20): 7970-7974.
[20]  唐光木,葛春辉,徐万里,等. 施用生物黑炭对灰漠土肥力与玉米生长的影响[J]. 农业环境科学学报, 2011,30(9): 1797-1802.
[21]  马莉,吕宁,冶军,等. 生物碳对灰漠土有机碳及组分的影响[J].中国生态农业学报, 2012,20(8): 976-981.
[22]  张阿凤,潘根兴,李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J]. 农业环境科学学报, 2009, 28(12): 2459-2463.
[23]  Uzoma K C, Inoue M, Andry H et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2): 205-212.
[24]  黄超,刘丽君,张明奎. 生物质炭对红壤性质和黑麦草生长的影响[J]. 浙江大学学报(农业与生命科学版),2011, 37(4): 439-445.
[25]  孟颖,王宏艳,于崧,等. 生物黑炭对玉米苗期根际土壤氮素形态及相关微生物的影响[J]. 中国生态农业学报, 2014, 22(3): 270-276.
[26]  Steiner C, Teixeira W G, Lehmann J et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 2007, 291(1-2): 275-290.
[27]  何绪生,张树清,佘雕,等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报,2011, 27(15): 16-25.
[28]  马莉,侯振安,吕宁,等. 生物碳对小麦生长和氮素平衡的影响[J]. 新疆农业科学, 2012, 49(4): 589-594.
[29]  曲晶晶,郑金伟,郑聚峰,等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报,2012, 28(3): 288-293.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133