全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

缺磷对不同耐低磷玉米基因型酸性磷酸酶活性的影响

DOI: 10.11674/zwyf.2015.0408, PP. 898-910

Keywords: 玉米,缺磷,酸性磷酸酶,基因型

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】酸性磷酸酶活性与土壤及植株体内有机磷的分解和再利用有着密切的关系。本研究以不同耐低磷玉米自交系为材料,研究低磷胁迫下玉米叶片、根组织内以及根系分泌酸性磷酸酶活性的变化及基因型差异,探讨酸性磷酸酶与玉米耐低磷之间的关系,以期更深入地了解玉米耐低磷的生理机制。【方法】以5个典型耐低磷自交系99180T、99239T、99186T、99327T、99184T和2个磷敏感自交系99152S、99270S为试验材料,采用营养液培养方法,设正常磷和低磷两种处理,分别于缺磷处理3、8和12d时调查取样,测定地上部干重、根干重、叶片中无机磷(Pi)含量、根和地上部磷累积量、根系分泌APase活性以及叶片中APase活性,并于缺磷处理12d测定根系内APase活性。【结果】1)缺磷使玉米地上部干重下降,根干重、根冠比增加,随着缺磷处理(3d→8d→12d)时间的延长,根干重、根冠比增加幅度增大,且耐低磷自交系根干重增加幅度普遍大于敏感自交系。2)低磷条件下,玉米自交系磷吸收、利用效率存在基因型差异,耐低磷自交系99239T、99180T和99327T磷吸收效率较高,99186T和99184T磷利用效率高,敏感自交系99152S、99270S磷吸收和利用效率均较低。3)低磷处理使玉米自交系叶片无机磷(Pi)含量显著下降,耐低磷自交系99184T、99327T和99239T下降幅度较小,相对叶片无机磷含量较高。4)缺磷诱导玉米根系分泌的APase活性升高。耐低磷自交系99184T和99186T根系分泌APase活性升高幅度较大,其余3个耐低磷自交系未表现出明显优势。缺磷处理3d、8d,玉米根系分泌APase活性与磷累积量显著正相关,而12d时相关性不显著;根系分泌APase活性与磷利用效率在缺磷处理12d时达显著正相关。说明玉米根系分泌APase活性与磷吸收、利用效率相关关系不稳定。5)缺磷处理12d,各玉米自交系根组织内APase活性与根系分泌APase活性变化情况较一致,两者相关系数r=0.755(P<0.05)。6)缺磷条件下各玉米自交系叶片组织内APase活性均有升高趋势,并表现出明显的基因型差异。缺磷处理8d,耐低磷自交系99184T和99239T叶片组织内APase活性升高幅度最大,其次是99327T和99186T,99180T、99270S和99152S升高幅度较小;缺磷处理12d,各玉米自交系叶片APase活性仍继续增加,99239T、99184T、99327T和99186T的相对APase活性均较高,99270S和99152S的相对APase活性较低。相关性分析表明,缺磷条件下玉米自交系叶片中相对APase活性与叶片中相对无机磷(Pi)含量显著正相关,与磷吸收、利用效率不显著相关。【结论】低磷诱导玉米叶片、根组织和根系分泌APase活性升高,根组织和根系分泌APase活性的大小与玉米耐低磷能力不完全相关,叶片APase活性与玉米耐低磷能力有较好的一致性。

References

[1]  Ma X F, Wright E, Ge Y X et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes[J]. Plant Science, 2009, 176: 479-488.
[2]  Ma X F, Tudor S, Wang Z Y. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils[J]. Molecular Breeding, 2012, 30(1): 377-391.
[3]  石磊, 梁宏玲, 徐芳森, 王运华. 甘蓝型油菜幼苗体内磷组分差异与磷高效关系的研究[J]. 植物营养与肥料学报, 2008, 14(2): 351- 356.
[4]  Liu Y, Mi G H, Chen F J et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217-223.
[5]  李锋, 李木英, 潘晓华, 朱安繁. 不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J]. 中国水稻科学, 2004, 18(1): 48-52.
[6]  Mclachlan K D.Acidphosphatase activity of intact root sandphosphorus nutrition in plants. 2 variations among wheat roots[J].Australian Journal of Agricultural Research, 1980, 31(3): 441-448.
[7]  Zhang H W, Huang Y, Ye X S, Xu F S. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus stress[J]. Plant and Soil, 2009, 320: 91-102.
[8]  Zhang L M, He L Y, Li J S, Xu S Z. Phosphorus nutrient characteristics of different maize (Zea mays L.) inbreds for tolerance to low-P stress[J]. Agricultural Sciences in China, 2005, 4(1): 101-105.
[9]  潘晓华,刘水英,李 锋,李木英.低磷胁迫对不同水稻品种幼苗光合作用的影响[J].作物学报,2003,29(5):770-774.
[10]  林启美, 黄德明. 应用酸性磷酸酶进行番茄磷素诊断[J]. 华北农学报, 1991, 6(2): 78-83.
[11]  张可炜, 李坤朋, 刘治刚, 张举仁. 磷水平对不同基因型玉米苗期磷吸收利用的影响[J]. 植物营养与肥料学报, 2007, 13(5): 795-801.
[12]  刘渊, 李喜焕, 孙星, 张彩英. 磷胁迫下大豆酸性磷酸酶活性变化及磷效率基因型差异分析[J]. 植物遗传资源学报, 2012, 13(4): 521-528.
[13]  Gaume A, Mchler F, Leòn C D et al. Low-P tolerance by maize genotypes: significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant and Soil, 2001, 228: 253-264.
[14]  MacDonald G K, Bennett E M, Potter P A. Ramankutty N. Agronomic phosphorus imbalances across the world’s croplands[J]. Proceedings of the National Academy of Sciences, 2011, 108: 3086-3091.
[15]  李涛, 曹翠玲, 田霄鸿, 胡景江. 低磷胁迫下熊猫豆侧根增多的生理机制研究[J]. 植物营养与肥料学报, 2013,19(4): 926-933.
[16]  Horst W J, Abdou M, Wiesler F. Genotypic difference in phosphorus efficiency in wheat[J]. Plant and Soil, 1993, 155/156: 293-296
[17]  Gardiner D T and Christen N W. Characterization of phosphorus efficiencies of two winter wheat cultivars[J]. Soil Science Society of America Journal, 1990, 54: 1337-1340.
[18]  张宝贵, 李贵桐. 土壤生物在土壤磷有效化中的作用[J]. 土壤学报, 1998, 35(1): 104-111.
[19]  Lynch J P. Roots of the second green revolution[J]. Australian Journal of Botany, 2007, 55: 1-20.
[20]  Dalal R C. Soil organic phosphorus[J]. Advances in Agronomy, 1977, 29: 83-117.
[21]  Asmar F, Gahoonia T S, Nielsen N E. Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil[J]. Plant and Soil, 1995,172: 117-122.
[22]  Helal H M. Varietal differences in root phosphatase activity as related to the utilization of organic phosphates[J]. Plant and Soil, 1990,123: 161-163.
[23]  魏志强, 史衍玺, 孔凡美.缺磷胁迫对花生磷酸酶活性的影响[J]. 中国油料作物学报, 2002, 24(3): 44-46.
[24]  周建朝, 韩晓日, 奚红光. 磷营养水平对不同基因型甜菜根磷酸酶活性的效应[J]. 植物营养与肥料学报, 2006, 12(2): 233-239.
[25]  陈永亮,李修岭,周晓燕.低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响[J].北京林业大学学报, 2006, 28(6): 46-50.
[26]  孙海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究[J].应用生态学报, 2002, 13(3): 379-381.
[27]  Mclanchlan K D. Acid phosphatase activity of intact roots and phosphorus nutrition in plants.Ⅰ. Assay conditions and phosphatase activity[J]. Australian Journal of Agricultural Research, 1980, 31: 429-440.
[28]  Marschner P,Solaiman Z,Rengel Z.Brassica genotypes differ in growth,phosphorus uptake and rhizosphere properties under P-limiting conditions[J].Soil Biology & Biochemistry, 2007, 39: 87-98.
[29]  George T S, Gregoryb P J, Hockinga P, Richardsona A E. Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro,but does not explain differences in the P-nutrition of plants when grown in soils[J]. Environmental and Experimental Botany, 2008, 64: 239-249.
[30]  Yan X,Liao H,Trull M C et al.Induction of a major leaf acid phosphatase does not confer adaptation to low P availability in common bean[J].Plant Physiology, 2001, 125: 1901-1911.
[31]  梁霞,刘爱琴,马祥庆,等.磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J].植物生态学报, 2005, 29(1): 54-59.
[32]  丁洪,李生秀.酸性磷酸酶活性与大豆耐低磷能力的相关研究[J].植物营养与肥料学报, 1997, 3(2): 123-128.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133