全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunoreactivity of the 14F7 Mab (Raised against N-Glycolyl GM3 Ganglioside) as a Positive Prognostic Factor in Non-Small-Cell Lung Cancer

DOI: 10.1155/2012/235418

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lung carcinoma is the leading cause of cancer-related mortality worldwide. Therefore, numerous studies are focusing on the assessment of other biological and molecular prognostic factors in these tumors. We evaluated the relationship between 14F7 Mab reactivity, pathological features, DNA-content and S-phase fraction (SPF), and their impact in the survival of NSCLC patients. Hematoxylin and eosin staining and immunohistochemistry optical microscopy assays as well as DNA content and SPF measuring using flow cytometry were performed. The 14F7 reactivity was widely observed in NSCLC sections, no depending of the clinicopathological characteristics. We also obtained differences in the intensity of reaction with 14F7 as well as in the SPF between diploid and aneuploid carcinomas. Patients with diploid tumors showing higher SPF and 14F7 reaction joint to a low mitotic index displayed higher survival rates. Our results are in agreement with the assumption of the possible positive prognostic value of 14F7 staining in NSCLC. 1. Introduction Malignant neoplasms of respiratory system are one of the most common human cancers. Among them, the malignancies of lung have a very poor prognosis, representing the leading cause of cancer-related mortality worldwide [1]. There are two main variants of the disease, non-small-cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is the most common form of the disease, accounting for approximately 85% of all cases [2]. Despite of the recent advances in cancer therapy, the therapeutic option available for patients with disease that cannot be surgically managed has traditionally been limited to chemotherapy, providing a modest survival benefit [3]. Nowadays, research efforts are focusing on the better understanding of tumor biology and genetics of lung tumors in order to select better molecules as target, leading to more effective treatments for this often difficult disease [3]. Among these molecules, gangliosides have been included [4]. Gangliosides are sialic-acid-containing glycosphingolipids engaged in many biological events that take place at vertebrate’s cell membrane [5]. Usually, malignant cells expressing aberrant glycolylated pattern in the gangliosides composition have been identified by immunohistochemistry. It is known that N-acetylneuraminic acid (NeuAc) is the most abundant sialic acid form expressed in humans. In contrast to NeuAc, the expression of NeuGc (N-glycolylneuraminic acid) forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) has been considered as

References

[1]  K. Kaira, N. Oriuchi, N. Sunaga, T. Ishizuka, K. Shimizu, and N. Yamamoto, “A systemic review of PET and biology in lung cancer,” American Journal of Translational Research, vol. 3, no. 4, pp. 383–391, 2011.
[2]  A. Barzi and N. A. Pennell, “Targeting angiogenesis in non-small cell lung cancer: agents in practice and clinical development,” European Journal of Clinical and Medical Oncology, vol. 2, no. 1, pp. 31–42, 2010.
[3]  E. Blanchard, “Targeted agents in non small cell lung cancer,” Cancer Therapy, vol. 6, pp. 95–102, 2008.
[4]  A. M. Hernández, D. Toledo, D. Martínez et al., “Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody,” Journal of Immunology, vol. 181, no. 9, pp. 6625–6634, 2008.
[5]  S. Zhang, C. Cordon-Cardo, H. S. Zhang et al., “Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides,” International Journal of Cancer, vol. 73, no. 1, pp. 42–49, 1997.
[6]  H. Higashi, Y. Nishi, Y. Fukui, et al., “Tumor-associated expression of glycosphingolipid Hanganutziu-Deicher antigen in human cancers,” Gann, The Japanese Journal of Cancer Research, vol. 75, no. 11, pp. 1025–1029, 1984.
[7]  Y. N. Malykh, R. Schauer, and L. Shaw, “N-Glycolylneuraminic acid in human tumours,” Biochimie, vol. 83, no. 7, pp. 623–634, 2001.
[8]  P. Tangvoranuntakul, P. Gagneux, S. Diaz et al., “Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12045–12050, 2003.
[9]  M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, “Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4228–4237, 2005.
[10]  H. H. Chou, H. Takematsu, S. Diaz et al., “A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11751–11756, 1998.
[11]  A. Carr, A. Mullet, Z. Mazorra et al., “A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors,” Hybridoma, vol. 19, no. 3, pp. 241–247, 2000.
[12]  A. M. Vazquez, M. Alfonso, B. Lanne et al., “Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids,” Hybridoma, vol. 14, no. 6, pp. 551–556, 1995.
[13]  H. van Cruijsen, M. Ruiz, P. van der Valk, T. D. de Gruijl, and G. Giaccone, “Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer,” BMC Cancer, vol. 9, article 180, 2009.
[14]  R. Blanco, E. Rengifo, M. Cede?o, Ch. E. Rengifo, D. F. Alonso, and A. Carr, “Immunoreactivity of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system,” ISRN Gastroenterology, vol. 2011, Article ID 645641, 8 pages, 2011.
[15]  D. W. Hedley, M. L. Friedlander, and I. W. Taylor, “Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 11, pp. 1333–1335, 1983.
[16]  G. Buccheri and D. Ferrigno, “Prognostic value of stage grouping and TNM descriptors in lung cancer,” Chest, vol. 117, no. 5, pp. 1247–1255, 2000.
[17]  G. Lyons, S. Quadrelli, D. Chimondegy, A. Iotti, and C. Silva, “Tumor size and survival in lung cancer, stage IA,” Medicina, vol. 68, no. 1, pp. 23–30, 2008.
[18]  R. P. Perng, C. Y. Chen, G. C. Chang et al., “Revisit of 1997 TNM staging system—Survival analysis of 1112 lung cancer patients in Taiwan,” Japanese Journal of Clinical Oncology, vol. 37, no. 1, pp. 9–15, 2007.
[19]  Y. Qiu, H. Yang, H. Chen et al., “Detection of CEA mRNA, p53 and AE1/AE3 in haematoxylin-eosin-negative lymph nodes of early-stage non-small cell lung cancer may improve veracity of N staging and indicate prognosis,” Japanese Journal of Clinical Oncology, vol. 40, no. 2, Article ID hyp144, pp. 146–152, 2010.
[20]  R. Blanco, E. Rengifo, Ch. E. Rengifo, M. Cede?o, M. Frómeta, and A. Carr, “Immunohistochemical reactivity of the 14F7 monoclonal antibody raised against N-glycolyl GM3 ganglioside in some benign and malignant skin neoplasms,” ISRN Dermatology, vol. 2011, Article ID 848909, 8 pages, 2011.
[21]  R. Blanco, M. Cede?o, X. Escobar, et al., “Immunorecognition of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in some normal and malignant tissues from genitourinary system,” ISRN Pathology, vol. 2011, Article ID 953803, 10 pages, 2011.
[22]  J. De Leòn, A. Fernández, C. Mesa, M. Clavel, and L. E. Fernández, “Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells,” Cancer Immunology, Immunotherapy, vol. 55, no. 4, pp. 443–450, 2006.
[23]  J. de León, A. Fernández, M. Clavell et al., “Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25-effector and naturally occurring CD4+CD25+ regulatory T cells function,” International Immunology, vol. 20, no. 4, pp. 591–600, 2008.
[24]  A. M. Scursoni, L. Galluzzo, S. Camarero et al., “Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer,” Clinical and Developmental Immunology, vol. 2011, Article ID 245181, 6 pages, 2011.
[25]  M. Tubiana and A. Courdi, “Cell proliferation kinetics in human solid tumours: relation to probability of metastatic dissemination and long-term survival,” Radiotherapy and Oncology, vol. 15, pp. 1–18, 1989.
[26]  G. P. M. Ten Velde, B. Schutte, A. Vermeulen, A. Volovics, M. M. J. Reynders, and G. H. Blijham, “Flow cytometric analysis of DNA ploidy level in paraffin-embedded tissue of non-small-cell lung cancer,” European Journal of Cancer and Clinical Oncology, vol. 24, no. 3, pp. 455–460, 1988.
[27]  H. J. Choi, T. W. Chung, S. K. Kang et al., “Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression—Transcriptional induction of and by inhibition of PI-3K/AKT pathway,” Glycobiology, vol. 16, no. 7, pp. 573–583, 2006.
[28]  D. M. Li and H. Sun, “PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15406–15411, 1998.
[29]  V. Ludovini, L. Pistola, V. Gregorc et al., “Biological markers and DNA flow cytometric analysis in radically resected patients with non-small cell lung cancer. A study of the perugia multidisciplinary team for thoracic tumors,” Tumori, vol. 94, no. 3, pp. 398–405, 2008.
[30]  A. M. Scursoni, L. Galluzzo, S. Camarero et al., “Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry,” Pediatric and Developmental Pathology, vol. 13, no. 1, pp. 18–23, 2010.
[31]  S. Saber and P. Salehian, “P53 and Ki67 biomarkers as prognostic factors of non small cell lung carcinoma,” Acta Medica Iranica, vol. 43, no. 2, pp. 127–130, 2005.
[32]  J. Simony, J. L. Pujol, M. Radal, E. Ursule, F. B. Michel, and H. Pujol, “In situ evaluation of growth fraction determined by monoclonal antibody Ki-67 and ploidy in surgically resected non-small cell lung cancers,” Cancer Research, vol. 50, no. 14, pp. 4382–4387, 1990.
[33]  J. C. Pence, B. J. M. Kerns, R. K. Dodge, and J. D. Iglehart, “Prognostic significance of the proliferation index in surgically resected non-small-cell lung cancer,” Archives of Surgery, vol. 128, no. 12, pp. 1382–1390, 1993.
[34]  D. Choma, J. P. Daurès, X. Quantin, and J. L. Pujol, “Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data,” British Journal of Cancer, vol. 85, no. 1, pp. 14–22, 2001.
[35]  S. Y. Park, H.-S. Lee, H.-J. Jang, G. K. Lee, K. Y. Chung, and J. I. Zo, “Tumor necrosis as a prognostic factor for stage IA non-small cell lung cancer,” Annals of Thoracic Surgery, vol. 91, no. 6, pp. 1668–1673, 2011.
[36]  D. E. B. Swinson, J. L. Jones, D. Richardson, G. Cox, J. G. Edwards, and K. J. O'Byrne, “Tumour necrosis is an independent prognostic marker in non-small cell lung cancer: correlation with biological variables,” Lung Cancer, vol. 37, no. 3, pp. 235–240, 2002.
[37]  J. Yin, A. Hashimoto, M. Izawa et al., “Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells,” Cancer Research, vol. 66, no. 6, pp. 2937–2945, 2006.
[38]  S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti, “Gangliosides as components of lipid membrane domains,” Glycobiology, vol. 17, no. 1, pp. 1–13, 2007.
[39]  A. M. M. Silveira E. Souza, E. S. Trindade, M. C. Jamur, and C. Oliver, “Gangliosides are important for the preservation of the structure and organization of RBL-2H3 mast cells,” Journal of Histochemistry and Cytochemistry, vol. 58, no. 1, pp. 83–93, 2010.
[40]  H. Higashi, M. Naiki, S. Matuo, and K. Okouchi, “Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid,” Biochemical and Biophysical Research Communications, vol. 79, no. 2, pp. 388–395, 1977.
[41]  W. Schlenzka, L. Shaw, S. Kelm et al., “CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya,” FEBS Letters, vol. 385, no. 3, pp. 197–200, 1996.
[42]  G. Marquina, H. Waki, L. E. Fernandez et al., “Gangliosides expressed in human breast cancer,” Cancer Research, vol. 56, no. 22, pp. 5165–5171, 1996.
[43]  I. Meivar-Levy, H. Sabanay, A. D. Bershadsky, and A. H. Futerman, “The role of sphingolipids in the maintenance of fibroblast morphology,” Journal of Biological Chemistry, vol. 17, pp. 1558–1564, 1997.
[44]  A. Fujita, J. Cheng, and T. Fujimoto, “Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton,” Biochimica et Biophysica Acta, vol. 1791, no. 5, pp. 388–396, 2009.
[45]  L. Roque-Navarro, K. Chakrabandhu, J. De León et al., “Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 2033–2041, 2008.
[46]  J. Chou, Y. C. Lin, J. Kim et al., “Nasopharyngeal carcinoma—Review of the molecular mechanisms of tumorigenesis,” Head and Neck, vol. 30, no. 7, pp. 946–963, 2008.
[47]  A. Carr, C. Mesa, M. D. C. Arango, A. M. Vázquez, and L. E. Fernández, “In vivo and in vitro anti-tumor effect of 14F7 monoclonal antibody,” Hybridoma and Hybridomics, vol. 21, no. 6, pp. 463–468, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413