全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automated Measurement of Immature Granulocytes: Performance Characteristics and Utility in Routine Clinical Practice

DOI: 10.1155/2012/483670

Full-Text   Cite this paper   Add to My Lib

Abstract:

The granulocytic “shift to left” reflects marrow response to bacterial infection, and this may be quantified as band count or immature granulocyte count (IGC). The former value, used widely in neonatal sepsis, has been notoriously difficult to measure accurately and precisely. A reproducible, precise, and accurate counting of immature granulocyte counts may be possible with automation. This study of 200 febrile patients aimed at analysing the performance characteristics of automated immature granulocytes (AIGs) in predicting blood culture and their clinical utility. The absolute (IGC) and relative IG count (IG%) had area under curve (AUC) of 0.69 and 0.66. Moreover, the means of IGC and IG% between culture positive and negative groups were statistically significant suggesting that they are potential markers for bacteremia. IGC of 0.03?×?103?cu·mm and IG% of 0.5% offered sensitivity of 86.3% and 92.2%, respectively, and may be used for screening for bacteremia. Higher values, IGC?>?0.3, and IG%?>?3 had specificity greater than 90%, although the values were infrequent. It may not be long before that these automated hemograms are put into regular diagnostic use. 1. Introduction Early detection of bacteremia facilitates timely initiation of antimicrobial therapy, reduces morbidity and mortality, and decreases healthcare costs thereby making it a relevant clinical objective. However, there is a considerable timelag before the blood culture results are available for the physician to act upon. This has necessitated studies to address the usefulness of various parameters to predict infection earlier [1]. The manual “band count” used widely in pediatric practice as a marker for bacterial infection has been notoriously difficult to measure accurately and precisely [2, 3]. Therefore, a more reproducible measurement of immature granulocytes might be a useful parameter to predict infection or sepsis. Automated hematology analysers have undergone numerous technical innovations during the last few years. Recent developments permit not only flagging of samples with abnormal cell population but also categorisation and counting of those cells [4]. The Coulter Act Diff 5 counter can perform a 5-part differential leucocyte count and can also enumerate the percentage and absolute number of immature granulocytes (IG% and IGC) using a technology that combines cytochemistry, focused flow impedance, and light absorbance [5, 6]. At this time, automated immature granulocyte measurements are still being evaluated in the research arena and do not form part of routine reporting.

References

[1]  M. A. Ansari-Lari, T. S. Kickler, and M. J. Borowitz, “Immature granulocyte measurement using the sysmex XE-2100: relationship to infection and sepsis,” American Journal of Clinical Pathology, vol. 120, no. 5, pp. 795–799, 2003.
[2]  W. Van Der Meer, W. Van Gelder, R. De Keijzer, and H. Willems, “Does the band cell survive the 21st century?” European Journal of Haematology, vol. 76, no. 3, pp. 251–254, 2006.
[3]  K. G. Nigro, M. O'Riordan, E. J. Molby, M. C. Walsh, and L. M. Sandhaus, “Performance of an automated immature granulocyte count as a predictor of neonatal sepsis,” American Journal of Clinical Pathology, vol. 123, no. 4, pp. 618–624, 2005.
[4]  M. Buttarello and M. Plebani, “Automated blood cell counts: state of the art,” American Journal of Clinical Pathology, vol. 130, no. 1, pp. 104–116, 2008.
[5]  D. -H. Park, K. Park, J. Park et al., “Screening of sepsis using leukocyte cell population data from the Coulter automatic blood cell analyzer DxH800,” International Journal of Laboratory Hematology, vol. 33, no. 4, pp. 391–399, 2011.
[6]  F. Chaves, B. Tierno, and D. Xu, “Quantitative determination of neutrophil VCS parameters by the Coulter automated hematology analyzer: new and reliable indicators for acute bacterial infection,” American Journal of Clinical Pathology, vol. 124, no. 3, pp. 440–444, 2005.
[7]  B. Fernandes and Y. Hamaguchi, “Automated enumeration of immature granulocytes,” American Journal of Clinical Pathology, vol. 128, no. 3, pp. 454–463, 2007.
[8]  B. Fernandes and Y. Hamaguchi, “Performance characteristics of the Sysmex XT-2000i hematology analyzer,” Laboratory Hematology, vol. 9, no. 4, pp. 189–197, 2003.
[9]  D. Field, E. Taube, and S. Heumann, “Performance evaluation of the immature granulocyte parameter on the sysmex XE-2100 automated hematology analyzer,” Laboratory Hematology, vol. 12, no. 1, pp. 11–14, 2006.
[10]  C. Briggs, S. Kunka, H. Fujimoto, Y. Hamaguchi, B. H. Davis, and S. J. Machin, “Evaluation of immature granulocyte counts by the XE-IG Master: upgraded software for the XE-2100 automated hematology analyzer,” Laboratory Hematology, vol. 9, no. 3, pp. 117–124, 2003.
[11]  CLSI . H20-A2 Reference Leukocyte (WBC) Differential Count (Proportional) and Evaluation of Instrumental Methods, Clinical Laboratory and Standards Institute, Wayne, Pa, USA, 2nd edition, 2007.
[12]  A. K. Akobeng, “Understanding diagnostic tests 3: receiver operating characteristic curves,” Acta Paediatrica, vol. 96, no. 5, pp. 644–647, 2007.
[13]  M. H. A. Roehrl, D. Lantz, C. Sylvester, and J. Y. Wang, “Age-dependent reference ranges for automated assessment of immature granulocytes and clinical significance in an outpatient setting,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 4, pp. 471–477, 2011.
[14]  M. Bruegel, G. M. Fiedler, G. Matthes, and J. Thiery, “Reference values for immature granulocytes in healthy blood donors generated on the Sysmex XE-2100 automated hematology analyser,” Sysmex Journal International, vol. 14, no. 1, pp. 5–7, 2004.
[15]  F. K. Sáenz, G. L. Narváez, M. Cruz, and C. Checa, “Immature granulocytes reference values, using the sysmex XE-2100 blood counter,” Revista Mexicana de Patología Clínica, vol. 57, no. 4, 2010.
[16]  D. P. Frings, B. Montag, A. Heydorn, M. Friedemann, W. Pothmann, and A. Nierhaus, “Immature granulocytes, immature myeloid cells and outcome in adult severe sepsis and septic shock,” in Proceedings of the 16th Annual Congress of the European Society of Intensive Care Medicine (ESICM '03), Amsterdam, Netherlands, October 2003.
[17]  C. Iddles, J. Taylor, R. Cole, et al., “Evaluation of immature granulocyte count in the diagnosis of sepsis using the Sysmex XE-2100 analyser,” Sysmex Journal International, vol. 17, pp. 20–29, 2007.
[18]  Th. Weiland, H. Kalkman, and H. Heihn, “Evaluation of the automated immature granulocyte count (IG) on sysmex XE-2100 automated haematology analyser vs. visual microscopy (NCCLS H20-A),” Sysmex Journal International, vol. 12, pp. 63–70, 2002.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133