全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阴影模型的正则化无设备重建与实时定位

DOI: 10.16383/j.aas.2015.c130441, PP. 1159-1165

Keywords: 无线射频层析成像,重建算法,最小角回归算法,l1最优化,吉洪诺夫正则化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在综合静态无线射频层析成像(Radiotomographicimaging,RTI)算法基础上,给出了一种可行且有效的实现无线传感器节点在空旷环境和障碍物条件下无线信号衰减原理障碍物监控的方法,实现定位与追踪.利用阴影衰落模型建立接收信号强度测量值线性系统模型,并采用SPIN令牌环通信协议收集接收信号强度;创新性地引入最小角回归算法与最小绝对值收缩和选择因子算法(Leastabsoluteshrinkageandselectionoperator,LASSO),提高了图像重建速度.即在吉洪诺夫正则化与l1正则化算法分析对比前提下,创新性引入改进的最小角回归(Leastangleregression,LARS)重建模型与算法,保证重建效果与复杂LASSO算法相似的同时,将重建图像速度提高一个数量级.实测基于16平方米范围内的16个JENNIC5139节点进行定位与追踪.实测结果与仿真相比虽稍有偏差,但近似符合.这充分表明:吉洪诺夫正则化与l1正则化适用于不同分辨率场景,且都可较好地反映障碍物状况.

References

[1]  Patwari N, Wilson J. RF sensor networks for device-free localization: measurements, models, and algorithms. Proceedings of the IEEE, 2010, 98(11): 1961-1973
[2]  Wilson J, Patwari N. Radio tomographic imaging with wireless networks. IEEE Transactions on Mobile Computing, 2010, 9(5): 621-632
[3]  Wilson J, Patwari N. See-through walls: motion tracking using variance-based radio tomography networks. IEEE Transactions on Mobile Computing, 2011, 10(5): 612-621
[4]  Chen X, Edelstein A, Li Y P, Coates M, Rabbat M, Men A. Sequential Monte Carlo for simultaneous passive device-free tracking and sensor localization using received signal strength measurements. In: Proceedings of the 10th International Conference on Information Processing in Sensor Networks (IPSN). Chicago, USA: IEEE, 2011. 342-353
[5]  Kaltiokallio O, Bocca M. Real-time intrusion detection and tracking in indoor environment through distributed RSSI processing. In: Proceedings of the 17th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). Toyama, Japan: IEEE, 2011. 61-70
[6]  Wilson J, Patwari N. A fade-level skew-Laplace signal strength model for device-free localization with wireless networks. IEEE Transactions on Mobile Computing, 2012, 11(6): 947-958
[7]  Patwari N, Agrawal P. Effects of correlated shadowing: connectivity, localization, and RF tomography. In: Proceedings of the 2008 International Conference on Information Processing in Sensor Networks. St. Louis, Missouri, USA: IEEE 2008. 82-93
[8]  Yanovsky F J, Ivashchuk V E, Prokhorenko V P. Through-the-wall surveillance technologies. In: Proceedings of the 6th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). Sevastopol, Peninsula: IEEE, 2012. 30-33
[9]  Zhao Y, Patwari N, Phillips J M, Venkatasubramanian S. Radio tomographic imaging and tracking of stationary and moving people via kernel distance. In: Proceedings of the 12th International Conference on Information Processing in Sensor Networks (IPSN'13). Philadelphia, Pennsylvania, USA: ACM, 2013. 229-240
[10]  Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, 25(1): 116-129
[11]  Youssef M, Mah M, Agrawala A. Challenges: device-free passive localization for wireless environments. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking. Montreal, QC, Canada: ACM, 2007. 222-229
[12]  Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
[13]  Kanso M A, Rabbat M G. Compressed RF tomography for wireless sensor networks: centralized and decentralized approaches. In: Proceedings of the 5th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS'10). Marina del Rey, CA, USA: IEEE, 2009. 173- 186
[14]  Kaltiokallio O, Bocca M, Patwari N. Enhancing the accuracy of radio tomographic imaging using channel diversity. In: Proceedings of the 9th International Conference on Mobile Adhoc and Sensor Systems (MASS), Las Vegas, Nevada, USA: IEEE, 2012. 254-262
[15]  Wilson J, Patwari N. Regularization methods for radio tomographic imaging. In: Proceedings of the 2009 Virginia Technical Symposium on Wireless Personal Communications. Blacksburg, VA, USA: VA Tech, 2009. 1-9
[16]  An Yao-Zu, Lu Yao, Zhao Hong. An adaptive-regularized image super-resolution. Acta Automatica Sinica, 2012, 38(4): 601-608 (安耀祖, 陆耀, 赵红. 一种自适应正则化的图像超分辨率算法. 自动化学报, 2012, 38(4): 601-608)
[17]  Xu Zong-Ben, Guo Hai-Liang, Wang Yao, Zhang Hai. Representative of L1/2 regularization among Lq (0Acta Automatica Sinica, 2012, 38(7): 1225-1228
[18]  Yi Lian-Jie. Radio Tomographic Imaging Governed by Compressed Sensing and Its Application [Master dissertation], Sun Yat-Sen University, China, 2010.(义连杰. 压缩传感支配的无线电层析成像及其应用 [硕士学位论文], 中山大学, 中国, 2010.)
[19]  Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics, 2004, 32(2): 407-499
[20]  Wu T T. LASSO penalized semiparametric regression on high-dimensional recurrent event data via coordinate descent. Journal of Statistical Computation and Simulation, 2013, 83(6): 1145-1155

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133