全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有减震器的吊杆施工期索力识别

, PP. 31-39

Keywords: 桥梁工程,提篮式系杆拱桥,索力识别,实用识别方法,减震器

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为提高带减震器吊杆索力的识别精度,建立了一种新的吊杆索力识别方法。依据吊杆的力学行为,建立了带减震器吊杆的运动微分方程,明确了减震器刚度、吊杆索力及其振动频率间的复杂关系;建立并求解了带减震器吊杆的张拉有限元模型,获得不同减震器参数下吊杆频率、索力的计算结果,并绘制索力-频率-刚度的三维关系曲面,以实测索力和频率识别吊杆的减震器刚度,基于牛顿插值法得到该刚度下吊杆索力计算公式,据此建立带减震器吊杆索力识别的实用方法。以某180m提篮式系杆拱桥吊杆索力识别为例,对所提方法进行验证。结果表明:该方法能有效地识别各施工阶段的吊杆索力,吊杆识别相对误差均小于10%,满足实际工程的需求,该方法可用于类似的实际工程中。

References

[1]  朱劲松,邑强.拱桥新型吊杆安全性及其静动力影响研究[J].桥梁建设,2011,40(1):39-42,51. ZHU Jin-song,YI Qiang.Study of Safety of New Type Suspenders and Their Impact on Static and Dynamic Performance of Arch Bridge[J].Bridge Construction,2011,40(1):39-42,51.
[2]  姜建山,唐德东,周建庭.桥梁索力测量方法与发展趋势[J].重庆交通大学学报:自然科学版,2008, 27(3):379-382,466. JIANG Jian-shan,TANG De-dong,ZHOU Jian-ting.Progress and Developing Trend of Cable Stress Measuring Methods of Bridge[J].Journal of Chongqing Jiaotong University:Natural Science,2008,27(3):379-382,466.
[3]  KRONEBERGER-STANTON K J,HARTSOUGH B R.A Monitor for Indirect Measurement of Cable Vibration Frequency and Tension[J].Transaction of the ASCE,1991,35(1):341-346.
[4]  吴晓亮.频率法在钢管混凝土吊杆拱桥索力测试中的研究与应用[D].合肥:合肥工业大学,2010. WU Xiao-liang.The Research and Application of Frequency Method in Concrete Filled Steel Arch Bridge Suspender Cable Tension Test [D].Hefei:Hefei University of Technology,2010.
[5]  李新生,项贻强.基于挠度曲线振型函数的系杆拱桥柔性吊杆索力测量公式[J].工程力学,2010,27(8):174-178,198. LI Xin-sheng,XIANG Yi-qiang.Tension Measurement Formula of Flexible Hanger Rods in Tied-rods Arch Bridges Based on Vibration Shape Function of Deflection Curve[J].Engineering Mechanics,2010,27(8):174-178,198.
[6]  何伟,陈淮,王博,等.复杂边界条件下基于频率法的吊杆张力测定研究[J].土木工程学报,2012,45(3):93-98. HE Wei,CHEN Huai,WANG Bo,et al.Study of Suspender Tension Measurement Based on Frequency Method with Complex Boundary Conditions[J].China Civil Engineering Journal,2012,45(3):93-98.
[7]  ZUI H,SHINKE T,NAMITA Y,et al.Practical Formulas for Estimation of Cable Tension by Vibration Method[J].Journal of Structural Engineering,1996,122(6):651-656.
[8]  徐跃良.数值分析[M].成都:西南交通大学出版社,2005. XU Yue-liang.Numerical Analysis[M].Chengdu:Southwest Jiaotong University Press,2005.
[9]  GB/T 18365—2001,斜拉桥热挤聚乙烯高强钢丝拉索技术条件[S]. GB/T 18365—2001,Technical Conditions for Hot-extruding PE Protection High Strength Wire Cable of Cable-stayed Bridge[S].
[10]  MATHEWS J,FINK K D.Numerical Methods Using MATLAB[M].4th ed.Englewood Cliffs:Pearson Education Ltd.,2004.
[11]  JTJ 071—98,公路工程质量检验评定标准[S]. JTJ 071—98,Quality Inspection and Evaluation Standards for Highway Engineering[S].
[12]  凌知民,杨沈红,沈炯伟.吊杆索力的计算方法与应用研究[J].石家庄铁道大学学报:自然科学版,2011,24(3):16-19. LING Zhi-min,YANG Shen-hong,SHEN Jiong-wei.Computing Method and Analytic Study of Suspender Forces[J].Journal of Shijiazhuang Tiedao University:Natural Science Edition,2011,24(3):16-19.
[13]  李廉锟.结构力学[M].4版.北京:高等教育出版社,2004. LI Lian-kun.Structural Mechanics[M].4th ed.Beijing:Higher Education Press,2004.
[14]  甘泉,王荣辉,饶瑞.基于振动理论的索力求解的一个实用计算公式[J].力学学报,2010,42(5):983-988. GAN Quan,WANG Rong-hui,RAO Rui.Practical Formula for Estimation on the Tensional Force of Cable by Its Measured Natural Frequencies[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(5):983-988.
[15]  STOLARSKI T,NAKASONE Y,YOSHIMOTO S,et al.Engineering Analysis with ANSYS Software[M].Oxford:Elsevier,2011.
[16]  曾甲华.大跨度悬索桥非线性抖振响应时域分析[D].成都:西南交通大学,2009. ZENG Jia-hua.Nonlinear Time Domain Buffeting Response Analysis of Long-span Suspension Bridge[D].Chengdu:Southwest Jiaotong University,2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133