全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reliability in One-Repetition Maximum Performance in People with Parkinson's Disease

DOI: 10.1155/2012/928736

Full-Text   Cite this paper   Add to My Lib

Abstract:

Strength training is an effective modality to improve muscular strength and functional performance in people with Parkinson's disease (PWP). One-repetition maximum (1-RM) is the gold standard assessment of strength; however, PWP suffer from day-to-day variations in symptom severity and performance characteristics, potentially adversely affecting the reliability of 1-RM performance. Herein, we assessed the reliability of 1-RM in PWP. Forty-six participants completed two sessions of 1-RM testing of knee extension, knee flexion, chest press, and biceps curl at least 72 hours apart. Significantly differences between testing sessions were identified for knee extension ( < 0.001), knee flexion ( = 0.042), and biceps curl ( = 0.001); however, high reliability (ICC > 0.90) was also identified between sessions. Interestingly, almost third of subjects failed to perform better on the second testing session. These findings suggest that 1-RM testing can be safely performed in PWP and that disease-related daily variability may influence 1-RM performance. 1. Introduction Parkinson’s disease (PD), a progressive neurological disease which is believed to affect over 1.5 million Americans, results from the degeneration of the dopaminergic neurons in the midbrain and the resulting reduced dopamine availability to the basal ganglia [1, 2]. The cardinal features of PD include rigidity, tremor, bradykinesia, and impaired postural control, and these symptoms are often unpredictable and their severity can fluctuate daily, often termed “day-to-day variability” [3–5]. Further, muscular weakness, identified by Dr. Parkinson as an early symptom of the disease, is also frequently reported by people with Parkinson’s (PWP) [6, 7]. However, inconsistent findings in the literature have obscured the elucidation of the underlying mechanism of the apparent weakness, thus, raising the debate if muscular weakness is intrinsic to the disease or a secondary consequence [8, 9]. Muscular weakness, when present in PWP, presents bilaterally and tends to increase as the velocity of movement increases [9]. While the specific contributory neurophysiological mechanisms remain uncertain, bradykinesia, the inability to energize the appropriate muscles to generate forces at a sufficient rate, is thought to be a major contributing factor [8, 10]. Bradykinesia likely results from basal ganglia pathophysiology leading to impairments in both motor programming and execution [11]. Muscular weakness and bradykinesia impair power production, particularly at lighter loads [8]. These reductions in muscular

References

[1]  T. Hampton, “Parkinson disease registry launched,” Journal of the American Medical Association, vol. 293, no. 2, p. 149, 2005.
[2]  A. Galvan and T. Wichmann, “Pathophysiology of parkinsonism,” Clinical Neurophysiology, vol. 119, no. 7, pp. 1459–1474, 2008.
[3]  D. B. Calne, B. J. Snow, and C. Lee, “Criteria for diagnosing Parkinson's disease,” Annals of Neurology, vol. 32, pp. S125–S127, 1992.
[4]  C. C. Goodman and W. G. Boissonnault, Pathology: Implications for the Physical Therapist, WB Saunders, Philadelphia, Pa, USA, 3rd edition, 1998.
[5]  G. A. Dakof and G. A. Mendelsohn, “Parkinson's disease. The psychological aspects of a chronic illness,” Psychological Bulletin, vol. 99, no. 3, pp. 375–387, 1986.
[6]  J. Parkinson, An Essay on the Shaking Palsy, Whittingham and Roland, London, UK, 1817.
[7]  M. Stacy, A. Bowron, M. Guttman et al., “Identification of motor and nonmotor wearing-off in Parkinson's disease: comparison of a patient questionnaire versus a clinician assessment,” Movement Disorders, vol. 20, no. 6, pp. 726–733, 2005.
[8]  N. E. Allen, C. G. Canning, C. Sherrington, and V. S. C. Fung, “Bradykinesia, muscle Weakness and reduced muscle power in Parkinson's disease,” Movement Disorders, vol. 24, no. 9, pp. 1344–1351, 2009.
[9]  R. Cano-De-La-Cuerda, M. Pérez-De-Heredia, J. C. Miangolarra-Page, E. Mu?oz-Hellín, and C. Fernández-De-Las-Pe?as, “Is there muscular weakness in parkinson's disease?” American Journal of Physical Medicine and Rehabilitation, vol. 89, no. 1, pp. 70–76, 2010.
[10]  M. Hallett and S. Khoshbin, “A physiological mechanism of bradykinesia,” Brain, vol. 103, no. 2, pp. 301–314, 1980.
[11]  A. Berardelli, J. C. Rothwell, P. D. Thompson, and M. Hallett, “Pathophysiology of bradykinesia in parkinson's disease,” Brain, vol. 124, no. 11, pp. 2131–2146, 2001.
[12]  J. R. Nocera, T. Buckley, D. Waddell, M. S. Okun, and C. J. Hass, “Knee extensor strength, dynamic stability, and functional ambulation: are they related in Parkinson's disease?” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 4, pp. 589–595, 2010.
[13]  L. M. Inkster, J. J. Eng, D. L. MacIntyre, and A. Jon Stoessl, “Leg muscle strength is reduced in Parkinson's disease and relates to the ability to rise from a chair,” Movement Disorders, vol. 18, no. 2, pp. 157–162, 2003.
[14]  B. K. Schilling, R. E. Karlage, M. S. LeDoux, R. F. Pfeiffer, L. W. Weiss, and M. J. Falvo, “Impaired leg extensor strength in individuals with Parkinson disease and relatedness to functional mobility,” Parkinsonism and Related Disorders, vol. 15, no. 10, pp. 776–780, 2009.
[15]  V. A. Goodwin, S. H. Richards, R. S. Taylor, A. H. Taylor, and J. L. Campbell, “The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis,” Movement Disorders, vol. 23, no. 5, pp. 631–640, 2008.
[16]  M. J. Falvo, B. K. Schilling, and G. M. Earhart, “Parkinson's disease and resistive exercise: rationale, review, and recommendations,” Movement Disorders, vol. 23, no. 1, pp. 1–11, 2008.
[17]  C. J. Hass, M. A. Collins, and J. L. Juncos, “Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: a randomized trial,” Neurorehabilitation and Neural Repair, vol. 21, no. 2, pp. 107–115, 2007.
[18]  L. E. Dibble, T. F. Hale, R. L. Marcus, J. Droge, J. P. Gerber, and P. C. LaStayo, “High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with parkinson's disease,” Movement Disorders, vol. 21, no. 9, pp. 1444–1452, 2006.
[19]  T. Toole, M. A. Hirsch, A. Forkink, D. A. Lehman, and C. G. Maitland, “The effects of a balance and strength training program on equilibrium in Parkinsonism: a preliminary study,” NeuroRehabilitation, vol. 14, no. 3, pp. 165–174, 2000.
[20]  B. K. Schilling, R. F. Pfeiffer, M. S. Ledoux, R. E. Karlage, R. J. Bloomer, and M. J. Falvo, “Effects of moderate-volume, high-load lower-body resistance training on strength and function in persons with parkinson's disease: a pilot study,” Parkinson's Disease, Article ID 824734, 2010.
[21]  L. E. Dibble, T. F. Hale, R. L. Marcus, J. P. Gerber, and P. C. LaStayo, “High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson's disease: a preliminary study,” Parkinsonism and Related Disorders, vol. 15, no. 10, pp. 752–757, 2009.
[22]  K. Tanaka, A. C. D. Quadros, R. F. Santos, F. Stella, L. T. B. Gobbi, and S. Gobbi, “Benefits of physical exercise on executive functions in older people with Parkinson's disease,” Brain and Cognition, vol. 69, no. 2, pp. 435–441, 2009.
[23]  K. E. Cruise, R. S. Bucks, A. M. Loftus, R. U. Newton, R. Pegoraro, and M. G. Thomas, “Exercise and Parkinson's: benefits for cognition and quality of life,” Acta Neurologica Scandinavica, vol. 123, no. 1, pp. 13–19, 2011.
[24]  M. A. Hirsch, T. Toole, C. G. Maitland, and R. A. Rider, “The effects of balance training and high-intensity resistance training on persons with idiopathic Parkinson's disease,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 8, pp. 1109–1117, 2003.
[25]  F. Rodrigues de Paula, L. F. Teixeira-Salmela, C. D. Coelho de Morais Faria, P. Rocha de Brito, and F. Cardoso, “Impact of an exercise program on physical, emotional, and social aspects of quality of life of individuals with Parkinson's disease,” Movement Disorders, vol. 21, no. 8, pp. 1073–1077, 2006.
[26]  T. A. Scandalis, A. Bosak, J. C. Berliner, L. L. Helman, and M. R. Wells, “Resistance training and gait function in patients with Parkinson's disease,” American Journal of Physical Medicine and Rehabilitation, vol. 80, no. 1, pp. 38–43, 2001.
[27]  P. K. Schot, K. M. Knutzen, S. M. Poole, and L. A. Mrotek, “Sit-to-stand performance of older adults following strength training,” Research Quarterly for Exercise and Sport, vol. 74, no. 1, pp. 1–8, 2003.
[28]  M. K. Y. Mak and C. W. Y. Hui-Chan, “Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson's disease: a randomized controlled trial,” Movement Disorders, vol. 23, no. 4, pp. 501–509, 2008.
[29]  T. A. Buckley, C. Pitsikoulis, and C. J. Hass, “Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients,” Movement Disorders, vol. 23, no. 9, pp. 1274–1280, 2008.
[30]  T. R. Baechle and R. W. Earle, Essentials of Strength Training and Conditioning, Human Kinetics Books, Champaign, Ill, USA, 3rd edition, 2008.
[31]  ACSM, ACSM's Resource Manual for Guidelines for Exercise Testing and Prescription, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2009.
[32]  I. Levinger, C. Goodman, D. L. Hare, G. Jerums, D. Toia, and S. Selig, “The reliability of the 1RM strength test for untrained middle-aged individuals,” Journal of Science and Medicine in Sport, vol. 12, no. 2, pp. 310–316, 2009.
[33]  R. M. Ritti-Dias, A. Avelar, E. P. Salvador, and E. S. Cyrino, “Influence of previous experience on resistance training on reliability of one-repetition maximum test,” Journal of Strength and Conditioning Research, vol. 25, no. 5, pp. 1418–1422, 2011.
[34]  L. L. Ploutz-Snyder and E. L. Giamis, “Orientation and Familiarization to 1RM Strength Testing in Old and Young Women,” Journal of Strength and Conditioning Research, vol. 15, no. 4, pp. 519–523, 2001.
[35]  W. T. Phillips, A. M. Batterham, J. E. Valenzuela, and L. N. Burkett, “Reliability of Maximal Strength Testing in Older Adults,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 2, pp. 329–334, 2004.
[36]  M. MacKay-Lyons, “Variability in spatiotemporal gait characteristics over the course of the L-dopa cycle in people with advanced parkinson disease,” Physical Therapy, vol. 78, no. 10, pp. 1083–1094, 1998.
[37]  J. Reimer, M. Grabowski, O. Lindvall, and P. Hagell, “Use and interpretation of on/off diaries in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 3, pp. 396–400, 2004.
[38]  B. Lindsey, “Hourly monitoring system for patients with Parkinson's disease,” Neurology Report, vol. 19, no. 1, pp. 30–33, 1995.
[39]  J. P. Weir, “Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM,” Journal of Strength and Conditioning Research, vol. 19, no. 1, pp. 231–240, 2005.
[40]  K. Shifren, P. Wood, K. Hooker, and J. R. Nesselroade, “Structure and variation of mood in individuals with Parkinson's disease: a dynamic factor analysis,” Psychology and Aging, vol. 12, no. 2, pp. 328–339, 1997.
[41]  J. J. van Hilten, H. A. M. Middelkoop, G. A. Kerkhof, and R. A. C. Roos, “A new approach in the assessment of motor activity in Parkinson's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 54, no. 11, pp. 976–979, 1991.
[42]  L. I. Katzel, J. D. Sorkin, R. F. Macko, B. Smith, F. M. Ivey, and L. M. Shulman, “Repeatability of aerobiccapacity measurements in Parkinson disease,” Medicine & Science in Sports & Exercise. In press.
[43]  P. D. Society, Fatigue and Parkinson’s, 2008.
[44]  M. Smeja, F. Foerster, G. Fuchs, D. Emmans, A. Hornig, and J. Fahrenberg, “24-h assessment of tremor activity and posture in Parkinson's disease by multi-channel accelerometry,” Journal of Psychophysiology, vol. 13, no. 4, pp. 245–256, 1999.
[45]  J. G. Nutt, “On-off phenomenon: relatin to levodopa pharmacokinetics and pharmacodynamics,” Annals of Neurology, vol. 22, no. 4, pp. 535–540, 1987.
[46]  H. Mitoma, M. Yoneyama, and S. Orimo, “24-hour recording of parkinsonian gait using a portable gait rhythmogram,” Internal Medicine, vol. 49, no. 22, pp. 2401–2408, 2010.
[47]  W. J. Kraemer, N. Ratamess, A. C. Fry et al., “Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players,” American Journal of Sports Medicine, vol. 28, no. 5, pp. 626–633, 2000.
[48]  W. Kroll, “Reliability of a selected measure of human strength,” Research Quarterly, vol. 33, no. 3, pp. 410–417, 1962.
[49]  W. Kroll, “Reliability variations of strength in test-retest situations,” Research Quarterly, vol. 34, no. 1, pp. 50–55, 1963.
[50]  E. T. Schroeder, Y. Wang, C. Castaneda-Sceppa et al., “Reliability of maximal voluntary muscle strength and power testing in older men,” Journals of Gerontology. Series A, vol. 62, no. 5, pp. 543–549, 2007.
[51]  M. J. Benton, P. D. Swan, and M. D. Peterson, “Evaluation of multiple one repetition maximum strength trials in untrained women,” Journal of Strength and Conditioning Research, vol. 23, no. 5, pp. 1503–1507, 2009.
[52]  R. M. R. Dias, G. G. Cucato, L. C. Camara, and N. Wolosker, “Reproducibility of the 1-RM test in individuals with peripheral obstructive arterial disease,” Revista Brasileira de Medicina do Esporte, vol. 16, no. 3, pp. 201–204, 2010.
[53]  K. L. Barnard, K. J. Adams, A. M. Swank, E. Mann, and D. M. Denny, “Injuries and muscle soreness during the one repetition maximum assessment in a cardiac rehabilitation population,” Journal of Cardiopulmonary Rehabilitation, vol. 19, no. 1, pp. 52–58, 1999.
[54]  V. S. Dourado, S. E. Tanni, L. C. O. Antunes et al., “Effect of three exercise programs on patients with chronic obstructive pulmonary disease,” Brazilian Journal of Medical and Biological Research, vol. 42, no. 3, pp. 263–271, 2009.
[55]  M. R. Rhea, S. D. Ball, W. T. Phillips, and L. N. Burkett, “A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength,” Journal of Strength and Conditioning Research, vol. 16, no. 2, pp. 250–255, 2002.
[56]  R. M. Enoka, “Neural adaptations with chronic physical activity,” Journal of Biomechanics, vol. 30, no. 5, pp. 447–455, 1997.
[57]  B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413