全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunohistochemical Expression of Platelet-Derived Growth Factor Receptors in Ovarian Cancer Patients with Long-Term Follow-Up

DOI: 10.1155/2012/851432

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. The well-documented role of the PDGF system in tumor growth and angiogenesis has prompted the development of new biological agents targeting the PDGF system. The aim of the present study was to analyze the expression of the PDGF-receptors in ovarian cancer and to investigate its relation to histopathological parameters and long-term overall survival. Methods. The immunohistochemical expression of PDGFR-α and PDGFR-β was investigated in tumor and stromal cells in 170 patients with histologically verified epithelial ovarian cancer. Results. Almost half of the tumor specimens showed high expression of PDGFR-α and PDGFR-β in tumor cells (43% and 41%) and in stromal compartments (32% and 44%). There was a significant association between high expression of PDGFR-α and high expression of PDGFR-β in both tumor and stromal cells. Coexpression of PDGFR-α and PDGFR-β in stromal cells was seen more often in serous adenocarcinomas than in nonserous adenocarcinomas. No clear correlation between PDGFR expression and longterm overall survival or clinical parameters was found. Conclusions. PDGFR-α and PDGFR-β were expressed in a subset of ovarian carcinomas but did not show significant prognostic importance in this material. 1. Introduction Epithelial ovarian cancer is the most deadly gynecologic cancer in the Western world. The majority of patients are diagnosed in advanced stage which is a contributory factor to the poor prognosis of the disease. The current state- of-art in front-line treatment is aggressive surgical debulking followed by a combination of chemotherapy with platinum/taxane [1, 2]. Even though high response rates are seen, relapse often occurs within few years, and, in most cases, the therapy will then change from a curative to a palliative perspective. A higher degree of individualized treatment strategies based on validated prognostic or predictive markers may help improve the outcome and are therefore highly warranted in ovarian cancer. Results from recently published studies have shown that the addition of antivascular endothelial growth factor (VEGF) treatment to first-line chemotherapy may be beneficial for a fraction of ovarian cancer patients [3, 4], also in the treatment of the recurrent disease [5–7]. However, several other growth factors are involved in angiogenesis [8], among them the platelet-derived growth factor (PDGF) system. It plays a role in cell growth [9], chemotaxis [9, 10], pericytes recruitment, and stabilization of microvasculature [11, 12] as well as in the recruitment of fibroblast in tumor stroma [13, 14]. The

References

[1]  M. A. Bookman, “First-line randomized trials: revisiting the Ptolemaic universe,” International Journal of Gynecological Cancer, vol. 18, no. 1, pp. 47–52, 2008.
[2]  J. T. Thigpen, “Chemotherapy for advanced ovarian cancer: overview of randomized trials,” Seminars in Oncology, vol. 27, no. 3, pp. 11–16, 2000.
[3]  T. J. Perren, A. M. Swart, J. Pfisterer, et al., “A phase 3 trial of bevacizumab in ovarian cancer,” New England Journal of Medicine, vol. 365, no. 26, pp. 2484–2496, 2011.
[4]  R. A. Burger, M. F. Brady, M. A. Bookman et al., “Incorporation of bevacizumab in the primary treatment of ovarian cancer,” The New England Journal of Medicine, vol. 365, pp. 2473–2483, 2011.
[5]  M. P. Smerdel, K. D. Steffensen, M. Waldstr?m, I. Brandslund, and A. Jakobsen, “The predictive value of serum VEGF in multiresistant ovarian cancer patients treated with bevacizumab,” Gynecologic Oncology, vol. 118, no. 2, pp. 167–171, 2010.
[6]  A. A. Garcia, H. Hirte, G. Fleming et al., “Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia,” Journal of Clinical Oncology, vol. 26, no. 1, pp. 76–82, 2008.
[7]  R. A. Burger, M. W. Sill, B. J. Monk, B. E. Greer, and J. I. Sorosky, “Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5165–5171, 2007.
[8]  N. Ferrara and R. S. Kerbel, “Angiogenesis as a therapeutic target,” Nature, vol. 438, no. 7070, pp. 967–974, 2005.
[9]  C. H. Heldin and B. Westermark, “Mechanism of action and in vivo role of platelet-derived growth factor,” Physiological Reviews, vol. 79, no. 4, pp. 1283–1316, 1999.
[10]  B. Westermark, A. Siegbahn, C. H. Heldin, and L. Claesson-Welsh, “B-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 1, pp. 128–132, 1990.
[11]  C. H. Heldin, A. Ostman, and C. H. Heldin, “PDGF and vessel maturation,” Recent Results in Cancer Research, vol. 180, pp. 103–114, 2010.
[12]  P. Lindahl, B. R. Johansson, P. Levéen, and C. Betsholtz, “Pericyte loss and microaneurysm formation in PDGF-B-deficient mice,” Science, vol. 277, no. 5323, pp. 242–245, 1997.
[13]  J. Dong, J. Grunstein, M. Tejada et al., “VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis,” EMBO Journal, vol. 23, no. 14, pp. 2800–2810, 2004.
[14]  K. Forsberg, I. Valyi-Nagy, C. H. Heldin, M. Herlyn, and B. Westermark, “Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 393–397, 1993.
[15]  R. Cao, M. A. Bj?rndahl, P. Religa, et al., “PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis,” Cancer Cell, vol. 6, no. 4, pp. 333–345, 2004.
[16]  A. Abdollahi and J. Folkman, “Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy,” Drug Resistance Updates, vol. 13, no. 1-2, pp. 16–28, 2010.
[17]  L. Fredriksson, H. Li, and U. Eriksson, “The PDGF family: four gene products form five dimeric isoforms,” Cytokine and Growth Factor Reviews, vol. 15, no. 4, pp. 197–204, 2004.
[18]  J. Andrae, R. Gallini, and C. Betsholtz, “Role of platelet-derived growth factors in physiology and medicine,” Genes and Development, vol. 22, no. 10, pp. 1276–1312, 2008.
[19]  H. Gerhardt and H. Semb, “Pericytes: gatekeepers in tumour cell metastasis?” Journal of Molecular Medicine, vol. 86, no. 2, pp. 135–144, 2008.
[20]  C. H. Heldin, A. ?stman, and L. R?nnstrand, “Signal transduction via platelet-derived growth factor receptors,” Biochimica et Biophysica Acta, vol. 1378, no. 1, pp. F79–F113, 1998.
[21]  L. Chen, Y. Shi, C. Y. Jiang et al., “Coexpression of PDGFR-alpha, PDGFR-beta and VEGF as a prognostic factor in patients with hepatocellular carcinoma,” International Journal of Biological Markers, vol. 26, no. 2, pp. 108–116, 2011.
[22]  T. Donnem, S. Al-Saad, K. Al-Shibli, S. Andersen, L. T. Busund, and R. M. Bremnes, “Prognostic impact of platelet-derived growth factors in non-small cell lung cancer tumor and stromal cells,” Journal of Thoracic Oncology, vol. 3, no. 9, pp. 963–970, 2008.
[23]  M. L. Fj?llskog, O. Hessman, B. Eriksson, and E. T. Janson, “Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas,” Acta Oncologica, vol. 46, no. 6, pp. 741–746, 2007.
[24]  I. Gockel, M. Moehler, K. Frerichs et al., “Co-expression of receptor tyrosine kinases in esophageal adenocarcinoma and squamous cell cancer,” Oncology Reports, vol. 20, no. 4, pp. 845–850, 2008.
[25]  Y. Kitadai, T. Sasaki, T. Kuwai et al., “Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential,” International Journal of Cancer, vol. 119, no. 11, pp. 2567–2574, 2006.
[26]  W. M. Ongkeko, X. Altuna, R. A. Weisman, and J. Wang-Rodriguez, “Expression of protein tyrosine kinases in head and neck squamous cell carcinomas,” American Journal of Clinical Pathology, vol. 124, no. 1, pp. 71–76, 2005.
[27]  J. Paulsson, T. Sj?blom, P. Micke et al., “Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer,” American Journal of Pathology, vol. 175, no. 1, pp. 334–341, 2009.
[28]  S. M. Apte, C. D. Bucana, J. J. Killion, D. M. Gershenson, and I. J. Fidler, “Expression of platelet-derived growth factor and activated receptor in clinical specimens of epithelial ovarian cancer and ovarian carcinoma cell lines,” Gynecologic Oncology, vol. 93, no. 1, pp. 78–86, 2004.
[29]  M. B. Dabrow, M. R. Francesco, F. X. McBrearty, and S. Caradonna, “The effects of platelet-derived growth factor and receptor on normal and neoplastic human ovarian surface epithelium,” Gynecologic Oncology, vol. 71, no. 1, pp. 29–37, 1998.
[30]  R. Henriksen, K. Funa, E. Wilander, T. Backstrom, M. Ridderheim, and K. Oberg, “Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms,” Cancer Research, vol. 53, no. 18, pp. 4550–4554, 1993.
[31]  H. Lassus, H. Sihto, A. Leminen et al., “Genetic alterations and protein expression of KIT and PDGFRA in serous ovarian carcinoma,” British Journal of Cancer, vol. 91, no. 12, pp. 2048–2055, 2004.
[32]  D. Matei, R. E. Emerson, Y. C. Lai et al., “Autocrine activation of PDGFRα promotes the progression of ovarian cancer,” Oncogene, vol. 25, no. 14, pp. 2060–2069, 2006.
[33]  R. E. Schmandt, R. Broaddus, K. H. Lu et al., “Expression of c-ABL, c-KIT, and platelet-derived growth factor receptor-β in ovarian serous carcinoma and normal ovarian surface epithelium,” Cancer, vol. 98, no. 4, pp. 758–764, 2003.
[34]  S. P. Wilczynski, Y. Y. Chen, W. Chen, S. B. Howell, J. E. Shively, and D. S. Alberts, “Expression and mutational analysis of tyrosine kinase receptors c-kit, PDGFRα, and PDGFRβ in ovarian cancers,” Human Pathology, vol. 36, no. 3, pp. 242–249, 2005.
[35]  S. Yamamoto, H. Tsuda, M. Takano et al., “Expression of platelet-derived growth factors and their receptors in ovarian clear-cell carcinoma and its putative precursors,” Modern Pathology, vol. 21, no. 2, pp. 115–124, 2008.
[36]  R. A. Burger, “Overview of anti-angiogenic agents in development for ovarian cancer,” Gynecologic Oncology, vol. 121, no. 1, pp. 230–238, 2011.
[37]  J. Schmitt and D. Matei, “Platelet-derived growth factor pathway inhibitors in ovarian cancer,” Clinical Ovarian Cancer, vol. 1, no. 2, pp. 120–126, 2008.
[38]  A. Jakobsen, K. Bertelsen, J. E. Andersen et al., “Dose-effect study of carboplatin in ovarian cancer: a Danish Ovarian Cancer Group study,” Journal of Clinical Oncology, vol. 15, no. 1, pp. 193–198, 1997.
[39]  C. V. Madsen, K. D. Steffensen, M. Waldstr?m, and A. Jakobsen, “The prognostic value of syndecan-1 in ovarian cancer patients with long-term follow up,” Clinical Ovarian Cancer, vol. 4, no. 1, pp. 12–18, 2011.
[40]  Y. Shimizu, S. Kamoi, S. Amada, F. Akiyama, and S. G. Silverberg, “Toward the development of a universal grading system for ovarian epithelial carcinoma: testing of a proposed system in a series of 461 patients with uniform treatment and follow-up,” Cancer, vol. 82, pp. 893–901, 1998.
[41]  J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[42]  M. K?bel, S. E. Kalloger, N. Boyd et al., “Ovarian carcinoma subtypes are different diseases: implications for biomarker studies,” PLoS Medicine, vol. 5, no. 12, p. e232, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413