全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

砷在植物体内的吸收和代谢机制研究进展

DOI: 10.11983/CBB14209, PP. 516-526

Keywords: ,吸收,代谢,运输,超积累

Full-Text   Cite this paper   Add to My Lib

Abstract:

?砷污染在全世界尤其是东南亚地区已成为一个严峻的环境问题,严重威胁着农业生产、生态环境及人体健康。植物是砷流入人体最主要的途径之一。揭示植物对砷吸收、转运和储存及阐明植物调控砷超积累和迁移的分子机制,对开发植物修复技术并有效控制砷向食物链迁移意义重大。该文综述了目前植物砷吸收与代谢机制的研究进展,并对植物体内参与砷运输过程的转运蛋白进行了重点阐述。

References

[1]  1 郭学军, 黄巧云, 赵振华, 陈雯莉 (2002). 微生物对土壤环境中重金属活性的影响. 应用与环境生物学报 8, 105-110.
[2]  2 金银龙, 梁超轲, 何公理, 曹静祥, 马凤, 王汉章, 应波, 吉荣娣 (2003). 中国地方性砷中毒分布调查(总报告). 卫生研究 32, 519-540.
[3]  3 魏复盛, 陈静生, 吴燕玉, 郑春江 (1991). 中国土壤环境背景值研究. 环境科学 12, 12-19.
[4]  4 吴佳, 谢明吉, 杨倩, 涂书新 (2011). 砷污染微生物修复的研究进展. 环境科学 32, 817-824.
[5]  5 詹宝, 徐文忠, 麻密 (2006). 砷超富集植物蜈蚣草原生质体的分离及其抗砷性分析. 植物学通报 23, 363-367.
[6]  6 Abbas MHH, Meharg AA (2008). Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize ( Zea mays L.). Plant Soil 304, 277-289.
[7]  7 Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH) 3 and Sb(OH) 3 across membranes. BMC Biol 6, 26.
[8]  8 Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006). Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus . Plant J 45, 917-929.
[9]  23 Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006). A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata . Plant Phy- siol 141, 1544-1554.
[10]  24 González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005). PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high- affinity phosphate transporter in Arabidopsis. Plant Cell 17, 3500-3512.
[11]  25 Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O′Connell MJ, Goldsbrough PB, Cobbett CS (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe . Plant Cell 11, 1153- 1163.
[12]  26 Huang Y, Hatayama M, Inoue C (2011). Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L. Planta 234, 1275-1284.
[13]  27 Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010). A vacuolar arsenite transporter necessary for arsenic tole- rance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22, 2045-2057.
[14]  32 Laverman AM, Blum JS, Schaefer JK, Phillips WJP, Lovley DR, Oremland RS (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microb 61, 3556-3561.
[15]  33 Lei M, Wan XM, Huang ZC, Chen TB, Li XW, Liu YR (2012). First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata . Environ Pollut 161, 1-7.
[16]  34 Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150, 2071-2080.
[17]  35 Liu F, Wang ZY, Ren HY, Shen CJ, Li Y, Ling HQ, Wu CY, Lian XM, Wu P (2010). OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62, 508- 517.
[18]  36 Liu WJ, Schat H, Bliek M, Chen Y, McGrath SP, George G, Salt DE, Zhao FJ (2012). Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana : implications for As detoxification and accumulation in plants. PLoS One 7, e42408.
[19]  37 Liu Y, Wang HB, Wong MH, Ye ZH (2009). The role of ar- senate reductase and superoxide dismutase in As accu- mulation in four Pteris species. Environ Int 35, 491-495.
[20]  38 Lomax C, Liu WJ, Wu LY, Xue K, Xiong JB, Zhou JZ, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012). Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193, 665-672.
[21]  39 Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006). A silicon transporter in rice. Nature 440, 688-691.
[22]  40 Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105, 9931-9935.
[23]  41 Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001). A fern that hyperaccumulates arsenic. Nature 409, 579.
[24]  42 Masschelyn PH, Delaune RD, Patrick WH (1991). Effect of redox potential and pH on arsenic speciation and solubil- ity in a contaminated soil. Environ Sci Technol 25, 1414- 1419.
[25]  43 Mathews S, Ma LQ, Rathinasabapathi B, Natarajan S, Saha UK (2010). Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. Bioresour Technol 101, 8024-8030.
[26]  44 Meharg AA, Hartley-Whitaker J (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154, 29-43.
[27]  45 Moore KL, Chen Y, van de Meene AML, Hughes L, Liu WJ, Gerak T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ (2014). Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol 201, 104-115.
[28]  46 Moore KL, Schrӧder M, Wu ZC, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Ma JF, Zhao FJ, Grovenor CRM (2011). High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Phy- siol 156, 913-924.
[29]  62 Shin H, Shin HS, Dewbre GR, Harrison MJ (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39, 629-642.
[30]  63 Smedley PL, Kinniburgh DG (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17, 517-568.
[31]  64 Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010). Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107, 21187-21192.
[32]  65 Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111, 15699-15704.
[33]  66 Srivastava M, Ma LQ, Singh N, Singh S (2005). Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56, 1335-1342.
[34]  67 Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) royle. Environ Sci Technol 41, 2930-2936.
[35]  69 Sun SB, Gu M, Cao Y, Huang XP, Zhang X, Ai PH, Zhao JN, Fan XR, Xu GH (2012). A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159, 1571-1581.
[36]  70 Tiwari M, Sharma D, Dwivedi S, Sing M, Tripath RD, Trivedi PK (2014). Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRA- MP1, in arsenic transport and tolerance. Plant Cell Environ 37, 140-152.
[37]  71 Verbruggen N, Hermans C, Schat H (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12, 364-372.
[38]  81 Xu XY, McGrath SP, Zhao FJ (2007). Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176, 590-599.
[39]  82 Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP, Feldmann J, Zhao FJ (2010). Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154, 1505-1513.
[40]  83 Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010). The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186, 392- 399.
[41]  86 Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003). The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata . New Phytol 159, 403-410.
[42]  9 Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno López MV, Lopez DL, Jean JS, Cornejo L, Lauer Macedo LF, Filho AT (2012). Arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429, 92-106.
[43]  10 Cao DY, Chen Y, Chen JG, Shi SL, Chen ZR, Wang CC, Danku JM, Zhao FJ, Salt DE (2014). Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12, e1002009.
[44]  11 Carey AM, Lombi E, Donner E, de Jonge MD, Punshon T, Jackson BP, Guerinot ML, Price AH, Meharg AA (2012). A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Anal Bioanal Chem 402, 3275-3286.
[45]  12 Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011). Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192, 87-98.
[46]  13 Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010). Grain unloading of arsenic species in rice. Plant Physiol 152, 309-319.
[47]  14 Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, del Puerto YL, Mateos I, Rojo E, Hernández LE, Jarillo JA, Piñeiro M, Paz-Ares J, Leyva A (2013). WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25, 2944-2957.
[48]  15 Catarecha P, Segura MD, Franco-Zorrilla JM, Garcıía- Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007). A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19, 1123-1133.
[49]  16 Chen JY, Liu Y, Ni J, Wang YF, Bai YH, Shi J, Gan J, Wu ZC, Wu P (2011). OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157, 269-278.
[50]  17 Chen TB, Wei CY, Huang ZC, Huang QF, Lu Q, Fan ZL (2002). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull 47, 902-905.
[51]  18 Danh LT, Truong P, Mammucari R, Foster N (2014). A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata . Int J Phyto- remediation 16, 429-453.
[52]  19 Das HK, Mitra AK, Sengupta PK, Hossaind A, Islame F, Rabbani GH (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30, 383-387.
[53]  20 Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20, 1140-1145.
[54]  21 Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006). Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103, 5413-5418.
[55]  22 Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007). A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174, 311- 321.
[56]  28 Isayenkov SV, Maathuis FJM (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582, 1625-1628.
[57]  29 Kabata-Pendias A (2010). Trace Elements in Soils and Plants, 4th edn. New York: CRC Press. pp. 353-361.
[58]  30 Kamiya T, Islam MR, Duan GL, Uraguchi S, Fujiwara T (2013). Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59, 580-590.
[59]  31 Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009). NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284, 2114-2120.
[60]  47 Mosa KA, Kumar K, Chhikara S, Mcdermot J, Liu ZJ, Musante C, White JC, Dhankher OP (2012). Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21, 1265-1277.
[61]  48 Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15, 403-413.
[62]  49 Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000). Reduction and coordination of arsenic in Indian Mustard. Plant Physiol 122, 1171-1177.
[63]  50 Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP (2004). Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219, 1080-1088.
[64]  51 Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C (2006). Arsenic detoxification and evolution of trime- thylarsine gas by a microbial arsenite S -adenosylme- thionine methyltransferase. Proc Natl Acad Sci USA 103, 2075-2080.
[65]  52 Quaghebeur M, Rengel Z (2003). The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132, 1600-1609.
[66]  53 Raab A, Feldmann J, Meharg AA (2004). The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica . Plant Physiol 134, 1113-1122.
[67]  54 Raab A, Ferreira K, Meharg AA, Feldmann J (2007a). Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus ? J Exp Bot 58, 1333-1338.
[68]  55 Raab A, Williams PN, Meharg A, Feldmann J (2007b). Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4, 197-203.
[69]  56 Rahman MA, Kadohashi K, Maki T, Hasegawa H (2011). Transport of DMAA and MMAA into rice ( Oryza sativa L.) roots. Environ Exp Bot 72, 41-46.
[70]  57 Sakai Y, Watanabe T, Wasaki J, Senoura T, Shinano T, Osaki M (2010). Influence of arsenic stress on synthesis and localization of low-molecular-weight thiols in Pteris vittata . Environ Pollut 158, 3663-3669.
[71]  58 Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso- Blanco C, Leyva A (2014). Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana . Nat Commun 5, 4617.
[72]  59 Sattelmacher B (2001). The apoplast and its significance for plant mineral nutrition. New Phytol 149, 167-192.
[73]  60 Schulz H, Härtling S, Tanneberg H (2008). The identifica- tion and quantification of arsenic-induced phytochela- tins—comparison between plants with varying As sensitivities. Plant Soil 303, 275-287.
[74]  61 Shen HL, He ZY, Yan HL, Xing ZN, Chen YS, Xu WX, Xu WZ, Ma M (2014). The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. J Proteomics 105, 46-57.
[75]  68 Su YH, McGrath SP, Zhu YG, Zhao FJ (2008). Highly effi- cient xylem transport of arsenite in the arsenic hyper- accumulator Pteris vittata. New Phytol 180, 434-441.
[76]  72 Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164, 2020-2029.
[77]  73 Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002). Mechanisms of arsenic hyperacc- umulation in Pteris vittata . Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130, 1552-1561.
[78]  74 Wang X, Ma LQ, Rathinasabapathi B, Cai Y, Liu YG, Zeng GM (2011). Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata . Environ Sci Tech- nol 45, 9719-9725.
[79]  75 Wang X, Ma LQ, Rathinasabapathi B, Liu YG, Zeng GM (2010). Uptake and translocation of arsenite and arsenate by Pteris vittata L: effects of silicon, boron and mercury. Environ Exp Bot 68, 222-229.
[80]  76 Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007). Evolutionary control of leaf element composition in plants. New Phytol 174, 516-523.
[81]  77 Wolterbeek HT, van der Meer AJGM (2002). Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L: radiotracer experiments with 76 As, 109,115 Cd, 64 Cu and 65,69m Zn. Sci Total Environ 287, 13-30.
[82]  78 Wu ZC, Ren HY, McGrath SP, Wu P, Zhao FJ (2011). Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157, 498-508.
[83]  79 Xu WZ, Dai WT, Yan HL, Li S, Shen HL, Chen YS, Xu H, Sun YG, He ZY, Ma M (2015). Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8, 722-733.
[84]  80 Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42, 5574-5579.
[85]  84 Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009). Arsenic uptake and metabolism in plants. New Phytol 181, 777- 794.
[86]  85 Zhao FJ, Stroud JL, Khan MA, McGrath SP (2012). Arsenic translocation in rice investigated using radioactive 73 As tracer. Plant Soil 350, 413-420.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133