全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

光色素信号通路中磷酸化修饰研究进展

DOI: 10.3724/SP.J.1259.2015.00241, PP. 241-254

Keywords: 光敏色素,光敏色素作用因子,磷酸化修饰

Full-Text   Cite this paper   Add to My Lib

Abstract:

?光是植物的唯一能量来源,植物在进化过程中产生不同的光敏色素来感知光信号。光信号通路中元件通常被特异翻译后修饰调节。光敏色素是一种自磷酸化的丝氨酸/苏氨酸蛋白激酶,可以被一些蛋白磷酸酶去磷酸化。通过对光敏色素A(phyA)和光敏色素B(phyB)的自磷酸化位点研究,发现自磷酸化对光敏色素的功能及其介导的信号通路起着非常重要的作用。光激活的光敏色素诱导光敏色素作用因子(PIF)磷酸化,这对于PIF的正常降解及光形态建成的起始是必需的。该文主要介绍了光敏色素信号通路磷酸化修饰的最新进展,以期为深入研究光敏色素信号转导机制提供参考。

References

[1]  3 Al-Sady B, Kikis EA, Monte E, Quail PH (2008). Mecha- nistic duality of transcription factor function in phytochrome signaling. Proc Natl Acad Sci USA 105, 2232- 2237.
[2]  4 Al-Sady B, Ni WM, Kircher S, Schäfer E, Quail PH (2006). Photoactivated phytochrome induces rapid PIF3 phos- phorylation prior to proteasome-mediated degradation. Mol Cells 23, 439-446.
[3]  5 Bae GY, Choi G (2008). Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59, 281-311.
[4]  6 Ballesteros ML, Bolle C, Lois LM, Moore JM, Vielle- Calzada JP, Grossniklaus U, Chua NH (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev 15, 2613-2625.
[5]  7 Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Ádám É, Fejes E, Schäfer E, Nagy F (2004). Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochro- me interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16, 1433-1445.
[6]  23 Deng XW, Caspar T, Quail PH (1991). Cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5, 1172-1182.
[7]  24 Desnos T, Puente P, Whitelam GC, Harberd NP (2001). FHY1: a phytochrome A-specific signal transducer. Genes Dev 15, 2980-2990.
[8]  38 Huq E, Quail PH (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21, 2441- 2450.
[9]  39 Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004). Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305, 1937- 1941.
[10]  40 Jordan ET, Cherry JR, Walker JM, Vierstra RD (1996). The amino-terminus of phytochrome A contains two distinct functional domains. Plant J 9, 243-257.
[11]  41 Jordan ET, Marita JM, Clough RC, Vierstra RD (1997). Characterization of regions within the N-terminal 6-kilo- dalton domain of phytochrome A that modulate its biological activity. Plant Physiol 115, 693-704.
[12]  42 Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010). Chapter two-light-regulated plant growth and development. Curr Top Dev Biol 91, 29-66.
[13]  43 Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004). A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16, 3033-3044.
[14]  49 Lapko VN, Wells TA, Song PS (1996). Protein kinase A-catalyzed phosphorylation and its effect on conforma- tion in phytochrome A. Biochemistry 35, 6585-6594.
[15]  50 Lapko VN, Jiang XY, Smith DL, Song PS (1997). Posttranslational modification of oat phytochrome A: phosphorylation of a specific serine in a multiple serine cluster. Biochemistry 36, 10595-10599.
[16]  51 Lapko VN, Jiang XY, Smith DL, Song PS (1999). Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications. Protein Sci 8, 1032-1044.
[17]  52 Laubinger S, Fittinghoff K, Hoecker U (2004). The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16, 2293-2306.
[18]  53 Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008a). The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20, 337-352.
[19]  54 Leivar P, Monte E, Cohn MM, Quail PH (2012). Phyto- chrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Mol Plant 5, 734-749.
[20]  55 Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH (2008b). Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18, 1815- 1823.
[21]  56 Leivar P, Quail PH (2011). PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16, 19-28.
[22]  60 Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérai Z, Fankhauser C, Medzihradszky KF, Kunkel T, Schäfer E, Nagy F (2013). Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25, 535-544.
[23]  61 Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang YL, Quail PH (2004). The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci USA 101, 16091-16098.
[24]  62 Moon J, Zhu L, Shen H, Huq E (2008). PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci USA 105, 9433-9438.
[25]  63 Nagatani A (2010). Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13, 565-570.
[26]  78 Serino G, Deng XW (2003). The COP9 signalosome: regulating plant development through the control of proteolysis. Annu Rev Plant Biol 54, 165-182.
[27]  1 王静, 王艇 (2007). 高等植物光敏色素的分子结构、生理功能和进化特征. 植物学报 24, 649-658.
[28]  2 Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998). The CRY1 blue light photoreceptor of Arabidopsis inter- acts with phytochrome A in vitro . Mol Cells 1, 939-948.
[29]  8 Bernardo-García S, de Lucas M, Martínez C, Espinosa- Ruiz A, Davière JM, Prat S (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28, 1681-1694.
[30]  9 Bu QY, Zhu L, Dennis MD, Yu L, Lu SX, Person MD, Tobin EM, Browning KS, Huq E (2011a). Phosphorylation by CK2 enhances the rapid light-induced degradation of phytochrome interacting factor 1 in Arabidopsis. J Biol Chem 286, 12066-12074.
[31]  10 Bu QY, Zhu L, Huq E (2011b). Multiple kinases promote light-induced degradation of PIF1. Plant Signal Behav 6, 1119-1121.
[32]  11 Casal JJ, Davis SJ, Kirchenbauer D, Viczian A, Yanovsky MJ, Clough RC, Kircher S, Jordan-Beebe ET, Schäfer E, Nagy F, Vierstra RD (2002). The serine-rich N- terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor. Plant Physiol 129, 1127-1137.
[33]  12 Chen F, Shi X, Chen L, Dai M, Zhou Z, Shen Y, Li J, Li G, Wei N, Deng XW (2012). Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. Plant Cell 24, 1907-1920.
[34]  13 Chen M, Chory J (2011). Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21, 664-671.
[35]  14 Chen M, Chory J, Fankhauser C (2004). Light signal transduction in higher plants. Annu Rev Genet 38, 87- 117.
[36]  15 Chen M, Galvão RM, Li MN, Burger B, Bugea J, Bolado J, Chory J (2010). Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141, 1230- 1240.
[37]  16 Cherry JR, Hondred D, Walker JM, Vierstra RD (1992). Phytochrome requires the 6 kDa N-terminal domain for full biological activity. Proc Natl Acad Sci USA 89, 5039- 5043.
[38]  17 Choi G, Yi HK, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999). Phytochrome signaling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610-613.
[39]  18 Chory J (2010). Light signal transduction: an infinite spectrum of possibilities. Plant J 61, 982-991.
[40]  19 Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989). Arabidopsis thaliana mutant that develops as a light- grown plant in the absence of light. Cell 58, 991-999.
[41]  20 Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA (2009). Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell 21, 786- 799.
[42]  21 Colón-Carmona A, Chen DL, Yeh KC, Abel S (2000). Aux/IAA proteins are phosphorylated by phytochrome in vitro . Plant Physiol 124, 1728-1738.
[43]  22 De Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Bláz- quez MA, Titarenko E, Prat S (2008). A molecular frame- work for light and gibberellin control of cell elongation. Nature 451, 480-484.
[44]  25 Emmler K, Stockhaus J, Chua NH, Schäfer E (1995). An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. Planta 197, 103- 110.
[45]  26 Fairchild CD, Schumaker MA, Quail PH (2000). HFR1 encodes an atypical bHLH protein that acts in phyto- chrome A signal transduction. Genes Dev 14, 2377-2391.
[46]  27 Fankhauser C, Yeh KC, Lagarias CJ, Zhang H, Elich TD, Chory J (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539-1541.
[47]  28 Fankhauser C, Chen M (2008). Transposing phytochrome into the nucleus. Trends Plant Sci 13, 596-601.
[48]  29 Franklin KA, Quail PH (2010). Phytochrome functions in Arabidopsis development. J Exp Bot 61, 11-24.
[49]  30 Fujimori T, Yamashino T, Kato T, Mizuno T (2004). Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis tha- liana . Plant Cell Physiol 45, 1078-1086.
[50]  31 Galvão RM, Li MN, Kothadia SM, Haskel JD, Decker PV, Van Buskirk EK, Chen M (2012). Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev 26, 1851-1863.
[51]  32 Han YJ, Kim HS, Kim YM, Shin AY, Lee SS, Bhoo SH, Song PS, Kim JI (2010). Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant Cell Physiol 51, 596-609.
[52]  33 Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E (2005). Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15, 2125-2130.
[53]  34 Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH hete- rodimers. EMBO J 28, 3893-3902.
[54]  35 Hu W, Su YS, Lagarias JC (2009). A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks. Mol Plant 2, 166- 182.
[55]  36 Hudson M, Ringli C, Boylan MT, Quail PH (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13, 2017-2027.
[56]  37 Hunt RE, Pratt LH (1980). Partial characterization of undegraded oat phytochrome. Biochemistry 19, 390-394.
[57]  44 Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schäfer E, Quail PH (2007). The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19, 3915-3929.
[58]  45 Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM (2002). A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell 14, 3043-3056.
[59]  46 Kim J, Yi H, Choi G, Shin B, Song PS, Choi G (2003). Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399-2407.
[60]  47 Kim JI, Shen Y, Han YJ, Park JE, Kirchenbauer D, Soh MS, Nagy F, Schäfer E, Song PS (2004). Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16, 2629-2640.
[61]  48 Koornneef M, Rolff E, Spruit CJP (1980). Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100, 147-160.
[62]  57 Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009). Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21, 3535-3553.
[63]  58 Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008). Phytochrome-mediated inhibition of shade avoi- dance involves degradation of growth-promoting bHLH transcription factors. Plant J 53, 312-323.
[64]  59 Lorrain S, Trevisan M, Pradervand S, Fankhauser C (2009). Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J 60, 449-461.
[65]  64 Nagy F, Schäfer E (2002). Phytochromes control photo- morphogenesis by differentially regulated, interacting sig- naling pathways in higher plants. Annu Rev Plant Biol 53, 329-355.
[66]  65 Ni M, Tepperman JM, Quail PH (1998). PIF3, a phyto- chrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
[67]  66 Ni WM, Xu SL, Chalkley RJ, Pham TND, Guan SH, Maltby DA, Burlingame AL, Wang ZY, Quail PH (2013). Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photo- receptor phyB levels in Arabidopsis. Plant Cell 25, 2679- 2698.
[68]  67 Ni WM, Xu SL, Tepperman JM, Stanley DJ, Maltby DA, Gross JD, Burlingame AL, Wang ZY, Quail PH (2014). A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160-1164.
[69]  68 Nito K, Wong CC, Yates JR 3rd, Chory J (2013). Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 3, 1970-1979.
[70]  69 Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007). Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358-361.
[71]  70 Oh E, Kim J, Park E, Kim JI, Kang C, Choi G (2004). PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Ara- bidopsis thaliana . Plant Cell 16, 3045-3058.
[72]  71 Oh E, Zhu JY, Wang ZY (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14, 802-809.
[73]  72 Oyama T, Shimura Y, Okada K (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983-2995.
[74]  73 Pfeiffer A, Nagel MK, Popp C, Wüst F, Bindics J, Viczián A, Hiltbrunner A, Nagy F, Kunkel T, Schäfer E (2012). Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci USA 109, 5892-5897.
[75]  74 Phee BK, Kim JI, Shin DH, Yoo J, Park KJ, Han YJ, Kwon YK, Cho MH, Jeon JS, Bhoo SH, Hahn TR (2008). A novel protein phosphatase indirectly regulates phyto- chrome-interacting factor 3 via phytochrome. Biochem J 415, 247-255.
[76]  75 Rockwell NC, Su YS, Lagarias JC (2006). Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57, 837-858.
[77]  76 Ryu JS, Kim JI, Kunkel T, Kim BC, Cho DS, Hong SH, Kim SH, Fernández AP, Kim Y, Alonso JM, Ecker JR, Nagy F, Lim PO, Song PS, Schäfer E, Nam HG (2005). Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120, 395-406.
[78]  77 Saijo Y, Zhu DM, Li JG, Rubio V, Zhou ZZ, Shen YP, Hoecker U, Wang HY, Deng XW (2008). Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in ba- lancing light signaling. Mol Cell 31, 607-613.
[79]  79 Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008). Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct phy- sical interactions with photoactivated phytochromes. Plant Cell 20, 1586-1602.
[80]  80 Shen Y, Khanna R, Carle CM, Quail PH (2007). Phyto- chrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol 145, 1043-1051.
[81]  81 Shen YP, Zhou ZZ, Feng SH, Li JG, Tan-Wilson A, Qu LJ, Wang HY, Deng XW (2009). Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell 21, 494-506.
[82]  82 Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, Lee D, Choi G (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phy- tochrome-interacting factors. Proc Natl Acad Sci USA 106, 7660-7665.
[83]  83 Stephenson PG, Fankhauser C, Terry MJ (2009). PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci USA 106, 7654-7659.
[84]  84 Stockhaus J, Nagatani A, Halfter U, Kay S, Furuya M, Chua NH (1992). Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Dev 6, 2364-2372.
[85]  85 Su YS, Lagarias JC (2007). Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic pl- ants. Plant Cell 19, 2124-2139.
[86]  86 Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010). Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107, 11626-11631.
[87]  87 Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang JR, Rivera M, Markley JL, Vierstra RD (2010). Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463, 250-254.
[88]  88 Wang HY, Deng XW (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21, 1339-1349.
[89]  89 Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757-768.
[90]  90 Yang SW, Jang IC, Henriques R, Chua NH (2009). FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 21, 1341-1359.
[91]  91 Yeh KC, Lagarias JC (1998). Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95, 13976-13981.
[92]  92 Yeh KC, Wu SH, Murphy JT, Lagarias JC (1997). A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505-1508.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133