The Effect of Cold Ischemia Time and/or Formalin Fixation on Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor-2 Results in Breast Carcinoma
Aims. To compare the results of estrogen and progesterone receptors (ER, PR), and human epidermal growth factor receptor-2 (HER2) expression status on biopsy and excision specimens and to evaluate the effect of cold ischemia time and/or formalin fixation on these biomarkers. Methods. Breast carcinomas that were diagnosed between 2007 and 2009 by core needle biopsy, and subsequently excised in our institution, were included in the study. Data regarding the tumor morphology, grade, and ER, PR, and HER2 status were retrospectively collected from the pathology reports. Results. Five out of 149 (3.4%) cases with ER-positive receptor status in the biopsy specimen became ER-negative in the subsequent excision specimen. Nine out of 126 (7.1%) cases with PR-positive receptor status in the biopsy specimen became PR-negative in the excision specimen. Receptor status change was predominantly seen in tumors with low ER and PR receptor expression. HER2 results were consistent between biopsy and excision specimens in all cases tested. Conclusions. Cold ischemia time and/or formalin fixation affect mainly ER and PR testing with low Allred scores and support the implementation of the ASCO/CAP guidelines. HER2 results, however, were not affected in our limited number of patients. 1. Introduction Breast cancer is one of the best examples where antibody-defined tumor markers are used as both prognostic and predictive factors. Prognostic factors are independently associated with the clinical outcome, whereas predictive factors are independently associated with response or lack of response to a particular treatment. Estrogen receptor (ER) expression is a positive prognostic marker of outcome and a strong predictive marker of response to hormone-based therapies such as tamoxifen [1, 2]. Similarly, progesterone receptor (PR) expression is correlated with better prognosis and higher response to hormone-based treatments and increases the predictive power of ER [3–5]. Yet another important marker in the evaluation of breast cancer is the human epidermal growth factor receptor-2 (HER2; c-erbB-2), which is a member of the epidermal growth factor receptor family. HER2 overexpression and/or gene amplification have been shown to be a poor prognostic factor in breast cancer [6, 7]. HER2 status is also predictive for sensitivity to anthracycline-based chemotherapies and relative resistance to cytoxan-based and tamoxifen-based adjuvant therapies [8]. Moreover, it is essential for the therapeutic decisions regarding the use of agents targeting the HER2 gene product such as the humanized,
References
[1]
G. Viale, M. M. Regan, E. Maiorano et al., “Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3846–3852, 2007.
[2]
D. C. Allred, J. M. Harvey, M. Berardo, and G. M. Clark, “Prognostic and predictive factors in breast cancer by immunohistochemical analysis,” Modern Pathology, vol. 11, no. 2, pp. 155–168, 1998.
[3]
S. K. Mohsin, H. Weiss, T. Havighurst et al., “Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study,” Modern Pathology, vol. 17, no. 12, pp. 1545–1554, 2004.
[4]
M. Stendahl, L. Rydén, B. Nordenskj?ld, P. E. J?nsson, G. Landberg, and K. Jirstr?m, “High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients,” Clinical Cancer Research, vol. 12, no. 15, pp. 4614–4618, 2006.
[5]
O. Abe, R. Abe, K. Enomoto, et al., “Tamoxifen for early breast cancer: an overview of the randomised trials,” The Lancet, vol. 351, no. 9114, pp. 1451–1467, 1998.
[6]
S. Paik, R. Hazan, E. R. Fisher et al., “Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer,” Journal of Clinical Oncology, vol. 8, no. 1, pp. 103–112, 1990.
[7]
M. F. Press, L. Bernstein, P. A. Thomas et al., “HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas,” Journal of Clinical Oncology, vol. 15, no. 8, pp. 2894–2904, 1997.
[8]
M. De Laurentiis, G. Arpino, E. Massarelli et al., “A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer,” Clinical Cancer Research, vol. 11, no. 13, pp. 4741–4748, 2005.
[9]
C. L. Vogel, M. A. Cobleigh, D. Tripathy et al., “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 719–726, 2002.
[10]
A. C. Wolff, M. E. H. Hammond, J. N. Schwartz et al., “American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Archives of Pathology and Laboratory Medicine, vol. 131, no. 1, pp. 18–43, 2007.
[11]
M. E. H. Hammond, D. F. Hayes, M. Dowsett et al., “American Society of Clinical oncology/college of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer,” Archives of Pathology and Laboratory Medicine, vol. 134, no. 6, pp. 907–922, 2010.
[12]
G. Uy, A. Laudico, J. Carnate Jr. et al., “Breast cancer hormone receptor assay results of core needle biopsy and modified radical mastectomy specimens from the same patients,” Clinical Breast Cancer, vol. 10, no. 2, pp. 154–159, 2010.
[13]
G. B. Mann, V. D. Fahey, F. Feleppa, and M. R. Buchanan, “Reliance on hormone receptor assays of surgical specimens may compromise outcome in patients with breast cancer,” Journal of Clinical Oncology, vol. 23, no. 22, pp. 5148–5154, 2005.
[14]
S. C. Young, R. J. Burkett, and C. Stewart, “Discrepancy in ER levels of breast carcinoma in biopsy vs mastectomy specimens,” Journal of Surgical Oncology, vol. 29, no. 1, pp. 54–56, 1985.
[15]
I. Teicher, M. A. Tinker, and L. J. Auguste, “Effect of operative devascularization on estrogen and progesterone receptor levels in breast cancer specimens,” Surgery, vol. 98, no. 4, pp. 784–791, 1985.
[16]
J. S. Meyer, K. Schechtman, and R. Valdes Jr., “Estrogen and progesterone receptor assays on breast carcinoma from mastectomy specimens,” Cancer, vol. 52, no. 11, pp. 2139–2143, 1983.
[17]
J. Hasson, P. A. Luhan, and M. W. Kohl, “Comparison of estrogen receptor levels in breast cancer samples from mastectomy and frozen section specimens,” Cancer, vol. 47, no. 1, pp. 138–139, 1981.
[18]
L. M. Ellis, J. L. Wittliff, M. S. Bryant et al., “Lability of steroid hormone receptors following devascularization of breast tumors,” Archives of Surgery, vol. 124, no. 1, pp. 39–42, 1989.
[19]
N. S. Goldstein, M. Ferkowicz, E. Odish, A. Mani, and F. Hastah, “Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma,” American Journal of Clinical Pathology, vol. 120, no. 1, pp. 86–92, 2003.
[20]
T. Khoury, S. Sait, H. Hwang et al., “Delay to formalin fixation effect on breast biomarkers,” Modern Pathology, vol. 22, no. 11, pp. 1457–1467, 2009.
[21]
J. Qiu, S. Kulkarni, R. Chandrasekhar et al., “Effect of delayed formalin fixation on estrogen and progesterone receptors in breast cancer: a study of three different clones,” American Journal of Clinical Pathology, vol. 134, no. 5, pp. 813–819, 2010.
[22]
R. Bhargava, N. N. Esposito, and D. J. Dabbs, “Immunohistology of the breast,” in Diagnostic Immunohistochemistry Theranostic and Genomic Applications, D. J. Dabbs, Ed., pp. 763–819, Elsevier Saunders, Philadelphia, Pa, USA, 3rd edition, 2010.
[23]
S. Apple, R. Pucci, A. C. Lowe, I. Shintaku, S. Shapourifar-Tehrani, and N. Moatamed, “The effect of delay in fixation, different fixatives, and duration of fixation in estrogen and progesterone receptor results in breast carcinoma,” American Journal of Clinical Pathology, vol. 135, no. 4, pp. 592–598, 2011.
[24]
A. C. Lowe, G. Nanjangud, I. Shintaku, et al., “Effect of ischemic time, fixation time and fixatives on Her-2/Neu IHC and FISH results in breast cancer,” Modern Pathology, vol. 24, supplement 1, 59A-Abstract 206, 2011.
[25]
B. Portier, E. Downs-Kelly, J. Rowe, et al., “Cold ischemia time: effect on HER2 detection by In-Situ hybridization and immunohistochemistry,” Modern Pathology, vol. 24, supplement 1, 52A-Abstract 206, 2011, Abstract No. 236.
[26]
T. W. Jacobs, J. E. Prioleau, I. E. Stillman, and S. J. Schnitt, “Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer,” Journal of the National Cancer Institute, vol. 88, no. 15, pp. 1054–1059, 1996.
[27]
M. Mirlacher, M. Kasper, M. Storz et al., “Influence of slide aging on results of translational research studies using immunohistochemistry,” Modern Pathology, vol. 17, no. 11, pp. 1414–1420, 2004.
[28]
D. M. Barnes, R. R. Millis, L. V. A. M. Beex, S. M. Thorpe, and R. E. Leake, “Increased use of immunohistochemistry for oestrogen receptor measurement in mammary carcinoma: the need for quality assurance,” European Journal of Cancer, vol. 34, no. 11, pp. 1677–1682, 1998.
[29]
S. Paik, C. Kim, and N. Wolmark, “HER2 status and benefit from adjuvant trastuzumab in breast cancer,” The New England Journal of Medicine, vol. 358, no. 13, pp. 1409–1411, 2008.