Letamendia A, Quevedo C, Ibarbia I, et al. Development and validation of an automated high-throughput system for zebrafish in vivo screenings[J]. PLoS ONE, 2012, 7(5):e36690.
[2]
Lessman C A. The developing zebrafish (Danio rerio):a vertebrate model for high-throughput screening of chemical libraries[J]. Birth Defects Res C Embryo Today, 2011, 93(3):268.
[3]
Spomer W, Pfriem A, Alshut R, et al. High-throughput screening of zebrafish embryos using automated heart detection and imaging[J]. J Lab Autom, 2012,17(6):435.
[4]
Pardo-Martin C, Chang T, Koo B K, et al. High-throughput in vivo vertebrate screening[J]. Nat Methods, 2010, 7(8):634.
[5]
Barbazuk W B, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and human genomes[J]. Genome Res, 2000, 10(9):1351.
[6]
李乙根,黄文瑾,黄诚.斑马鱼在新药发现中的应用[J].生命科学,2011,23(3):273.
[7]
Beliaeva N F, Kashirtseva V N, Medvedeva N V, et al. Zebrafish as a model system for biomedical studies[J]. Biomed Khim, 2009,3(4):343.
[8]
Delvecchio C, Tiefenbach J, Krause H M. The zebrafish:a powerful platform for in vivo, HTS drug discovery[J]. Assay Drug Dev Technol, 2011, 9(4):354.
[9]
Zon L I, Peterson R T. In vivo drug discovery in the zebrafish[J]. Nat Rev Drug Discov, 2005, 4(1):35.
[10]
Makhija D T, Jagtap A G. Studies on sensitivity of zebrafish as a model organism for Parkinson\'s disease:comparison with rat model[J]. J Pharmacol Pharmacother, 2014, 5(1):39.
Ridges S, Heaton W L, Joshi D, et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia[J]. Blood, 2012, 119(24):5621.
[13]
Walcott B P, Peterson R T. Zebrafish models of cerebrovascular disease[J]. J Cereb Blood Flow Metab, 2014, 34(4):571.
[14]
Prabhudesai S, Sinha S, Attar A, et al. A novel "molecular tweezer" inhibitor of α-synuclein neurotoxicity in vitro and in vivo[J]. Neurotherapeutics, 2012, 9(2):464.
Mathias J R, Saxena M T, Mumm J S. Advances in zebrafish chemical screening technologies[J]. Future Med Chem, 2012, 4(14):1811.
[17]
Huang H, Lindgren A, Wu X, et al. High-throughput screening for bioactive molecules using primary cell culture of transgenic zebrafish embryos[J]. Cell Rep, 2012, 2(3):695.
[18]
Nguyen C T, Lu Q, Wang Y, et al. Zebrafish as a model for cardiovascular development and disease[J]. Drug Discov Today Dis Models, 2008,5(3):135.
[19]
Vogt A, Cholewinski A, Shen X, et al. Automated image-based phenotypic analysis in zebrafish embryos[J]. Dev Dyn, 2009, 238(3):656.
[20]
Clements W K, Traver D. Fish pharming:zebrafish antileukemia screening[J]. Blood, 2012, 119(24):5614.
[21]
Folkman J. Angiogenesis:an organizing principle for drug discovery[J]. Nat Rev Drug Discov, 2007,6(4):273.
Parng C, Seng W L, Semino C, et al. Zebrafish:a preclinical model for drug screening[J]. Assay Drug Dev Technol,2002,1(1 Pt 1):41.
[24]
Durand E M, Zon L I. Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment[J]. Curr Opin Hematol, 2010, 17(4):308.
[25]
White R M, Cech J, Ratanasirintrawoot S, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma[J]. Nature, 2011, 471(7339):518.
[26]
Liang Z, He M, Fong W, et al. A comparable, chemical and pharmacological analysis of the traditional Chinese medicinal herbs Oldenlandia diffusa and O. corymbosa and a new valuation of their biological potential[J]. Phytomedicine, 2008,15(4):259.
[27]
He Z H, He M F, Ma S C, et al. Anti-angiogenic effects of rhubarb and its anthraquinone derivatives[J]. J Ethnopharmacol, 2009,121(2):313.
Zhong Z F, Hoi P M, Wu G S, et al. Anti-angiogenic effect of furanodiene on HUVECs in vitro and on zebrafish in vivo[J]. J Ethnopharmacol, 2012,141(2):721.
[31]
He Z H, Zhou R, He M F, et al. Anti-angiogenic effect and mechanism of rhein from Rhizoma Rhei[J]. Phytomedicine, 2011,18(6):470.
[32]
Alex D, Lam I K, Lin Z, et al. Indirubin shows anti-angiogenic activity in an in vivo zebrafish model and an in vitro HUVEC model[J]. J Ethnopharmacol, 2010,131(2):242.
[33]
Lam K H, Alex D, Lam I K, et al. Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model[J]. J Cell Biochem, 2011, 112(11):3313.
Han L, Yuan Y, Zhao L, et al. Tracking antiangiogenic components from Glycyrrhiza uralensis Fisch. based on zebrafish assays using high-speed countercurrent chromatography[J]. J Sep Sci, 2012, 35(9):1167.
[36]
Hu G, Mahady G B, Li S, et al. Polysaccharides from astragali radix restore chemical-induced blood vessel loss in zebrafish[J]. Vasc Cell, 2012, 4(1):2.
Hong S J, Wan J B, Zhang Y, et al. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo[J]. Phytother Res, 2009, 23(5):677.
[39]
李惠玲.麝香保心丸促进斑马鱼血管生成作用[J].中国实用医药, 2012,7(16):173.
[40]
Orellana-Paucar A M, Serruys A S, Afrikanova T, et al. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse[J]. Epilepsy Behav, 2012, 24(1):14.
Long S M, Liang F Y, Wu Q, et al. Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish[J]. Mar Drugs, 2014, 12(6):3307.
[43]
Zhang Z R, Li J H, Li S, et al. In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza[J]. PLoS ONE, 2014, 9(7):e100416.
[44]
Tsuji N, Ninov N, Delawary M, et al. Whole organism high content screening identifies stimulators of pancreatic Beta-cell proliferation[J]. PLoS ONE, 2014, 9(8):e104112.
[45]
Spitsbergen J M, Kent M L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations[J]. Toxicol Pathol, 2003, 31 Suppl:62.
[46]
Milan D J, Peterson T A, Ruskin J N, et al. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish[J]. Circulation, 2003,107(10):1355.
[47]
Hill A, Mesens N, Steemans M, et al. Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development[J]. Drug Metab Rev, 2012, 44(1):127.
Leet J K, Lindberg C D, Bassett L A, et al. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia[J]. PLoS ONE, 2014, 9(8):e104190.
Chimote G, Sreenivasan J, Pawar N, et al. Comparison of effects of anti-angiogenic agents in the zebrafish efficacy-toxicity model for translational anti-angiogenic drug discovery[J]. Drug Des Devel Ther, 2014, 8:1107.
[55]
Graf S F, H?tzel S, Liebel U, et al. Image-based fluidic sorting system for automated Zebrafish egg sorting into multiwell plates[J]. J Lab Autom, 2011, 16(2):105.
[56]
Carvalho R, de Sonneville J, Stockhammer O W, et al. A high-throughput screen for tuberculosis progression[J]. PLoS ONE, 2011, 6(2):e16779.