全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clear Cell Carcinomas of the Mullerian System: Does the Pathogenesis Vary Depending on Their Nuclear Grade and Their Association with Endometriosis? An Immunohistochemical Analysis

DOI: 10.1155/2012/674748

Full-Text   Cite this paper   Add to My Lib

Abstract:

Clear cell carcinomas (CCC) of the mullerian system are considered high grade tumors, but morphologically, the cells of CCC show both low and high grade features. The aims of the current study were to categorize CCC into low and high nuclear grade types, correlate their association with endometriosis, and then observe possible variations in pathogenesis based on their expression of p53 and Ki-67. We studied 41 pure mullerian CCCs and designated each as either a high (HNG) or low (LNG) nuclear grade tumor. Morphologically, 17 (41%) CCCs were LNG and 24 (59%) were HNG. Nine (38%) HNG and 2 (12%) LNG tumors showed positive immunostaining with p53. Endometriosis was associated with 8 (47%) LNG tumors and 8 (33%) HNG CCCs. Of the 11 cases with p53 alteration, 4 (1 LNG and 3 HNG) were associated with endometriosis. Conclusions: HNG CCCs, irrespective of their association with endometriosis, have alterations of p53. In general, LNG ovarian and endometrial CCCs, irrespective of their association with endometriosis/adenomyosis, are less likely to show p53 alteration. It appears that mullerian CCCs may have variable pathogenesis depending on their nuclear grade and association with endometriosis. A larger study is needed to validate these findings. 1. Introduction While the pathogenesis of mullerian serous and endometrioid carcinomas has been linked to p53 and PTEN mutations, respectively, the pathogenesis of clear cell carcinoma remains largely speculative. Clear cell carcinoma (CCC) was initially termed “mesonephroid tumor” in 1939 [1] and, since 1973, has been strictly defined by the WHO as a tumor characterized by clear cells growing in solid/tubular or glandular patterns and sometimes as hobnail cells [2]. CCCs of the mullerian system are largely found in the endometrium and ovary, but primary peritoneal clear cell carcinoma has also been reported. CCCs also arise in the uterine cervix and vagina of women of all ages including children [3, 4]. It is known that many clear cell carcinomas arise in endometriosis. Recent studies have speculated that ovarian clear cell carcinoma may develop along two pathways, both of which are related to endometriosis [5]. In one pathway, the epithelial atypia arises within an endometriotic cyst and then progresses to carcinoma. In the noncystic pathway, endometriosis induces fibromatosis resulting in the formation of an adenofibroma. In this second pathway, adenofibromas progress to atypical adenofibroma and subsequently to CCC. CCCs of the uterus have been reported to arise from adenomyosis [6]. Studies have shown that cystic

References

[1]  W. Schiller, “Mesonephroma ovarii,” American Journal of Cancer, vol. 35, pp. 1–21, 1939.
[2]  S. F. Serov, R. E. Scully, and L. H. Sobin, “International histologic classification of tumors,” in Histologic Classification of Tumors, vol. 9, World Health Organization, Geneva, Switzerland, 1973.
[3]  M. A. Van Der Aa, T. J. M. Helmerhorst, S. Siesling, S. Riemersma, and J. W. Coebergh, “Vaginal and (uncommon) cervical cancers in the Netherlands, 1989–2003,” International Journal of Gynecological Cancer, vol. 20, no. 4, pp. 638–645, 2010.
[4]  F. C. Lester, D. L. Farmer, J. T. Rabban, and L. M. Chen, “Radical trachelectomy for clear cell carcinoma of the cervix in a 6-year old: a case report, review, and description of the surgical technique,” Journal of Pediatric Surgery, vol. 45, no. 8, pp. E1–E5, 2010.
[5]  C. Zhao, L. S. Wu, and R. Barner, “Pathogenesis of ovarian clear cell adenofibroma, atypical proliferative (borderline) tumor, and carcinoma: clinicopathologic features of tumors with endometriosis or adenofibromatous components support two related pathways of tumor development,” Journal of Cancer, vol. 2, pp. 94–106, 2011.
[6]  M. Kashiyama, A. Suzuki, M. Ozawa, et al., “Adenocarcinomas arising from uterine adenomyosis,” International Journal of Gynecological Pathology, vol. 21, pp. 239–245, 2002.
[7]  T. Terada, “Clear cell adenocarcinoma of the ovary arising in atypical endometriosis: a report of eight cases,” Archives of Gynecology and Obstetrics, vol. 285, no. 1, pp. 229–233, 2011.
[8]  E. Veras, T. L. Mao, A. Ayhan et al., “Cystic and adenofibromatous clear cell carcinomas of the ovary: distinctive tumors that differ in their pathogenesis and behavior: a clinicopathologic analysis of 122 cases,” American Journal of Surgical Pathology, vol. 33, no. 6, pp. 844–853, 2009.
[9]  M. L. Carcangiu and J. T. Chambers, “Early pathologic stage clear cell carcinoma and uterine papillary serous carcinoma of the endometrium: comparison of clinicopathologic features and survival,” International Journal of Gynecological Pathology, vol. 14, no. 1, pp. 30–38, 1995.
[10]  A. Malpica, C. Tornos, T. W. Burke, and E. G. Silva, “Low-stage clear-cell carcinoma of the endometrium,” American Journal of Surgical Pathology, vol. 19, no. 7, pp. 769–774, 1995.
[11]  S. Yamamoto, H. Tsuda, H. Shimazaki et al., “Clear cell adenocarcinoma with a component of poorly differentiated histology: a poor prognostic subgroup of ovarian clear cell adenocarcinoma,” International Journal of Gynecological Pathology, vol. 30, pp. 431–441, 2011.
[12]  A. Reles, A. Schmider, I. Sch?nborn et al., “Immunostaining of p53 protein in ovarian carcinoma: correlation with histopathological data and clinical outcome,” Journal of Cancer Research and Clinical Oncology, vol. 122, no. 8, pp. 489–494, 1996.
[13]  S. F. Lax, E. S. Pizer, B. M. Ronnett, and R. J. Kurman, “Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression,” Human Pathology, vol. 29, no. 6, pp. 551–558, 1998.
[14]  H. J. An, S. Logani, C. Isacson, and L. H. Ellenson, “Molecular characterization of uterine clear cell carcinoma,” Modern Pathology, vol. 17, no. 5, pp. 530–537, 2004.
[15]  D. Delair and R. A. Soslow, “Endometrial clear cell carcinomas with and without aberrant p53 expression: a study of 16 cases,” Modern Pathology, vol. 25, supplement 2, p. 265A, 2012.
[16]  O. Fadare, V. Parkash, W. D. Dupont, et al., “The diagnosis of endometrial carcinoma with clear cells by gynecologic pathologists: an assessment of interobserver variability and associated morphologic features,” The American Journal of Surgical Pathology, vol. 36, pp. 1107–1118, 2012.
[17]  A. Yemelyanova, R. Vang, M. Kshirsagar et al., “Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis,” Modern Pathology, vol. 24, pp. 1248–1253, 2011.
[18]  M. R. Quddus, C. J. Sung, W. Zheng, and S. C. Lauchlan, “p53 immunoreactivity in endometrial metaplasia with dysfunctional uterine bleeding,” Histopathology, vol. 35, no. 1, pp. 44–49, 1999.
[19]  M. Fukunaga, K. Nomura, E. Ishikawa, and S. Ushigome, “Ovarian atypical endometriosis: its close association with malignant epithelial tumours,” Histopathology, vol. 30, no. 3, pp. 249–255, 1997.
[20]  T. Toki, S. Fujii, and S. G. Silverberg, “A clinicopathologic study on the association of endometriosis and carcinoma of the ovary using a scoring system,” International Journal of Gynecological Cancer, vol. 6, no. 1, pp. 68–75, 1996.
[21]  H. Itamochi, J. Kigawa, T. Sugiyama, Y. Kikuchi, M. Suzuki, and N. Terakawa, “Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary,” Obstetrics and Gynecology, vol. 100, no. 2, pp. 281–287, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413