Koradi R, Billeter M, Wuthrich K. MOLMOL: A program for display and analysis of macromolecular structures[J]. J Mol Graph, 1996, 14: 51-55.
[2]
Johnson B A. Using NMR View to visualize and analyze the NMR spectra of macromolecules[J]. Methods Mol Biol Clifton NJ, 2004, 278: 313-352.
[3]
Shaw W J, Long J R, Dindot J L, et al. Determination of statherin N-terminal peptide conformation on hydroxyapatite crystals[J]. J Am Chem Soc, 2000, 122: 1 709-1 716.
[4]
Long J R, Shaw W J, Stayton P S, et al. Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR[J]. Biochemistry (Mosc), 2001, 40: 15 451-15 455.
[5]
Johnsson M, Richardson C F, Bergey E J, et al. The effects of human salivary cystatins and statherin on hydroxyapatite crystallization[J]. Arch Oral Biol, 1991, 36: 631-636.
[6]
Schlesinger D H, Hay D I. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium-phosphate precipitation from human parotid saliva[J]. J Biol Chem, 1977, 252: 1 689-1 695.
[7]
Wang L J, Nancollas G H. Calcium orthophosphates: crystallization and dissolution[J]. Chem Rev, 2008, 108: 4 628-4 669.
[8]
Raj P A, Johnsson M, Levine M J, et al. Salivary statherin-dependence on sequence, charge, hydrogen-bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization[J]. J Biol Chem, 1992, 267: 5 968-5 976.
[9]
Masica D L, Gray J J. Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system[J]. Biophys J, 2009, 96: 3 082-3 091.
[10]
Ndao M, Ash J T, Breen N F, et al. A 13C{31P} REDOR NMR investigation of the role of glutamic acid residues in statherin-hydroxyapatite recognition[J]. Langmuir, 2009, 25: 12 136-12 143.
[11]
Ndao M, Ash J T, Stayton P S, et al. The role of basic amino acids in the molecular recognition of hydroxyapatite by statherin using solid state NMR[J]. Surf Sci, 2010, 604: L39-L42.
[12]
Weidner T, Dubey M, Breen N F, et al. Direct observation of phenylalanine orientations in statherin bound to hydroxyapatite surfaces[J]. J Am Chem Soc, 2012, 134: 8 750-8 753.
[13]
Shaw W J. Solid-state NMR studies of proteins immobilized on inorganic surfaces[J]. Solid State Nucl Magn Reson, doi:10.1016/j.ssnmr.2014.10.003.
[14]
Chen P H, Tseng Y H, Mou Y, et al. Adsorption of statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite[J]. J Am Chem Soc, 2008, 130: 2 862-2 868.
[15]
Naganagowda G A, Gururaja T L, Levine M J. Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: Sequential assignment and structure-function correlations[J]. J Biomol Struct Dyn, 1998, 16: 91-107.
[16]
Sreerama N, Woody R W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set[J]. Anal Biochem, 2000, 287: 252-260.
[17]
Keller R. CARA: computer aided resonance assignment 2004[OL]. http://cara.nmr.ch/doku.php.
[18]
Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions[M]. Oxford: Clarendon Press, 1987.
[19]
Linge J P, Habeck M, Rieping W, et al. ARIA: Automated NOE assignment and NMR structure calculation[J]. Bioinformatics, 2003.